

1904 Third Avenue, Suite 105 Seattle, Washington 98101 www.pscleanair.org

2013

Air Quality Data Summary

August 2014

Working Together for Clean Air

Table of Contents

Table of Contents	İ
List of Figures	ii
List of Maps	iii
List of Tables	iii
Appendix – Data Tables	iii
Executive Summary	1
Monitoring Network	3
Air Quality Index	6
Particulate Matter	9
Particulate Matter – PM _{2.5} Speciation and Aethalometers	19
Ozone	21
Nitrogen Dioxide	25
Carbon Monoxide	27
Sulfur Dioxide	29
Lead	
Visibility	
Air Toxics	
Definitions	55

List of Figures

Figure 1: Number of Days Air Quality Rated As "Good" Per AQI	8
Figure 2: Days Exceeding the PM2.5 Health Goal at One or More Monitoring Sites1	1
Figure 3: Daily PM _{2.5} for King County1	4
Figure 4: Daily PM _{2.5} for Kitsap County1	4
Figure 5: Daily PM _{2.5} for Pierce County1	5
Figure 6: Daily PM _{2.5} for Snohomish County1	5
Figure 7: Annual PM _{2.5} for King County1	6
Figure 8: Annual PM _{2.5} for Kitsap County1	7
Figure 9: Annual PM _{2.5} for Pierce County1	7
Figure 10: Annual PM _{2.5} for Snohomish County1	8
Figure 11: Annual PM _{2.5} Black Carbon	0
Figure 12: Ozone for Puget Sound Region2	4
Figure 13: Ozone (O ₃) for Puget Sound Region April-September 20132	4
Figure 14: Annual Nitrogen Dioxide (NO ₂) (1995-2005) and Reactive Nitrogen (NO _y – NO) (2007-	
Present)	6
Figure 15: 2010 1-Hour Maximum Standard for Nitrogen Dioxide (NO ₂) (1995-2005) and Reactive	
Nitrogen (NO _y – NO) (2007-Present)2	6
Figure 16: Carbon Monoxide (CO): 2 nd Highest Annual 8-hour Value for Puget Sound Region2	8
Figure 17: Sulfur Dioxide (SO ₂) 1-Hour Maximum Concentrations (3-Year Average of the 99 th	
	0
Percentile) for the Puget Sound Region3	U
Percentile) for the Puget Sound Region	
,	3
Figure 18: Puget Sound Visibility	3 3
Figure 18: Puget Sound Visibility	3 3 4
Figure 18: Puget Sound Visibility	3 3 4 4
Figure 18: Puget Sound Visibility	3 4 4 5
Figure 18: Puget Sound Visibility	3 4 4 5 9
Figure 18: Puget Sound Visibility	3 3 4 4 5 9 0
Figure 18: Puget Sound Visibility3Figure 19: King County Visibility3Figure 20: Kitsap County Visibility3Figure 21: Pierce County Visibility3Figure 22: Snohomish County Visibility3Figure 23: Carbon Tetrachloride Annual Average Potential Cancer Risk at Beacon Hill, 2000-20133Figure 24: Benzene Annual Average Potential Cancer Risk at Beacon Hill, 2000-20134	3 3 4 5 9 0
Figure 18: Puget Sound Visibility	3 3 4 4 5 9 0 1 2
Figure 18: Puget Sound Visibility3Figure 19: King County Visibility3Figure 20: Kitsap County Visibility3Figure 21: Pierce County Visibility3Figure 22: Snohomish County Visibility3Figure 23: Carbon Tetrachloride Annual Average Potential Cancer Risk at Beacon Hill, 2000-20133Figure 24: Benzene Annual Average Potential Cancer Risk at Beacon Hill, 2000-20134Figure 25: 1,3-butadiene Annual Average Potential Cancer Risk at Beacon Hill, 2000-20134Figure 26: Cadmium Annual Average Potential Cancer Risk at Beacon Hill, 2003-20134	3 3 4 5 9 0 1 2 3
Figure 18: Puget Sound Visibility	3 3 4 4 5 9 0 1 2 3 4
Figure 18: Puget Sound Visibility	334459012345
Figure 18:Puget Sound Visibility	3344590123457
Figure 18: Puget Sound Visibility3Figure 19: King County Visibility3Figure 20: Kitsap County Visibility3Figure 21: Pierce County Visibility3Figure 22: Snohomish County Visibility3Figure 23: Carbon Tetrachloride Annual Average Potential Cancer Risk at Beacon Hill, 2000-20133Figure 24: Benzene Annual Average Potential Cancer Risk at Beacon Hill, 2000-20134Figure 25: 1,3-butadiene Annual Average Potential Cancer Risk at Beacon Hill, 2000-20134Figure 26: Cadmium Annual Average Potential Cancer Risk at Beacon Hill, 2000-20134Figure 27: Formaldehyde Annual Average Potential Cancer Risk at Beacon Hill, 2000-20134Figure 28: Arsenic Annual Average Potential Cancer Risk at Beacon Hill, 2000-20134Figure 29: Chloroform Annual Average Potential Cancer Risk at Beacon Hill, 2000-20134Figure 29: Chloroform Annual Average Potential Cancer Risk at Beacon Hill, 2000-20134Figure 21: Acetaldehyde Annual Average Potential Cancer Risk at Beacon Hill, 2000-20134Figure 23: Chloroform Annual Average Potential Cancer Risk at Beacon Hill, 2000-20134Figure 31: Acetaldehyde Annual Average Potential Cancer Risk at Beacon Hill, 2000-20134	33445901234579
Figure 18: Puget Sound Visibility.3Figure 19: King County Visibility3Figure 20: Kitsap County Visibility.3Figure 21: Pierce County Visibility.3Figure 22: Snohomish County Visibility.3Figure 23: Carbon Tetrachloride Annual Average Potential Cancer Risk at Beacon Hill, 2000-2013.3Figure 24: Benzene Annual Average Potential Cancer Risk at Beacon Hill, 2000-2013.4Figure 25: 1,3-butadiene Annual Average Potential Cancer Risk at Beacon Hill, 2000-2013.4Figure 26: Cadmium Annual Average Potential Cancer Risk at Beacon Hill, 2000-2013.4Figure 27: Formaldehyde Annual Average Potential Cancer Risk at Beacon Hill, 2000-2013.4Figure 28: Arsenic Annual Average Potential Cancer Risk at Beacon Hill, 2000-2013.4Figure 29: Chloroform Annual Average Potential Cancer Risk at Beacon Hill, 2000-2013.4Figure 29: Chloroform Annual Average Potential Cancer Risk at Beacon Hill, 2000-2013.4Figure 21: Acetaldehyde Annual Average Potential Cancer Risk at Beacon Hill, 2000-2013.4Figure 23: Naphthalene Annual Average Potential Cancer Risk at Beacon Hill, 2000-2013.4Figure 32: Naphthalene Annual Average Potential Cancer Risk at Beacon Hill, 2000-2013.4	334459012345791
Figure 18: Puget Sound Visibility	3344590123457912

List of Maps

Map 1: Active Air Monitoring Network for 2013	
Map 2: The 98 th Percentile 3-Year Average Daily PM _{2.5} Concentrations fo	or 2013 12
Map 3: Ozone 3-year Average of 4 th Highest 8-hr Value for 2013	

List of Tables

Table 1:	Air Quality Monitoring Network	4
Table 2:	AQI Ratings for 2013	7
Table 3:	2013 Beacon Hill Air Toxics Ranking 3	7
Table 4:	2013 Calculation and Breakpoints for the Air Quality Index (AQI) 4	8

Appendix – Data Tables

Air Quality Index King County (1980-2013)	A-1
Air Quality Index Kitsap County (1990-2013)	A-3
Air Quality Index Pierce County (1980-2013)	A-5
Air Quality Index Snohomish County (1980-2013)	A-7
Monitoring Methods Used from 1999 to 2013 in the Puget Sound air shed	A-9
Historical Air Quality Monitoring Network	A-10
Burn Bans 1988-2013	A-14
Particulate Matter (PM _{2.5}) – Federal Reference Sampling Method	A-15
Particulate Matter (PM _{2.5}) – Continuous TEOM Sampling Method	A-16
Particulate Matter (PM _{2.5}) – Continuous Nephelometer Sampling Method	A-17
PM _{2.5} Speciation Analytes Monitored in 2013	A-18
PM _{2.5} Black Carbon	A-19
Ozone (8-hour concentration)	A-20
Reactive Nitrogen	A-21
Carbon Monoxide	A-22
Sulfur Dioxide	A-23
2013 Beacon Hill Air Toxics Statistical Summary for Air Toxics	A-24
2013 Air Toxics Unit Risk Factors	A-25
2013 Beacon Hill Potential Cancer Risk Estimates, per 1,000,000, 95 th Percentile	A-26
Non-cancer Reference Concentrations (RfC) and Hazard Indices >1	A-27
Air Toxics Trends Statistical Summary	A-28
Air Quality Standards and Health Goals	A-29

The 2013 Air Quality Data Summary is available for viewing or download on the internet at:

www.pscleanair.org

Links to additional documents for download are also available at the web site.

This material is available in alternate formats for people with disabilities. Please call Joanna Cruse at (206) 689-4067 (1-800-552-3565, ext. 4067).

Executive Summary

The Puget Sound Clean Air Agency (the Agency) reports air quality data every year. The purpose is to summarize regional air quality by presenting air quality monitoring results for six criteria air pollutants and air toxics. The U.S. Environmental Protection Agency (EPA) sets national ambient air quality standards (NAAQS) for the criteria pollutants. The criteria pollutants are:

- Particulate Matter (particles 10 micrometers and 2.5 micrometers in diameter)
- Ozone
- Nitrogen Dioxide
- Carbon Monoxide
- Sulfur Dioxide

Air toxics are defined by Washington State and the Agency to include hundreds of chemicals and compounds that are associated with a broad range of adverse health effects, including cancer.¹ Many air toxics are a component of either particulate matter or volatile organic compounds (a precursor to ozone). The Air Quality Index (AQI) is a nationwide reporting standard for the criteria pollutants. The AQI is used to relate air quality levels to health effects in a simplified way. "Good" AQI days continued to dominate our air quality in 2013. However, air quality degrades into "moderate" or "unhealthy for sensitive groups" for brief periods.

The Agency and the Washington State Department of Ecology (Ecology) work together to monitor air quality within the Puget Sound region.² The Agency's jurisdiction includes King, Snohomish, Pierce, and Kitsap counties. Real-time air monitoring data are available for pollutants at <u>pscleanair.org/airquality/ourairquality/Pages/currentaq.aspx</u>. To receive the Agency's most updated news and stay current on air quality issues in King, Kitsap, Pierce and Snohomish counties, visit <u>pscleanair.org/contact/Pages/connect.aspx</u> and select your favorite news feed method. Friends and subscribers receive the latest on air quality news and updates on projects in the Puget Sound region. You can also find us on Facebook and Twitter.

Data included in this report are for our "fixed" (relatively stable) monitoring network. We also undertake local, seasonal monitoring studies – you can see these study results on our website at http://www.pscleanair.org/.

The Agency and Ecology continued to monitor the region's air quality in 2013. Over the last two decades, many pollutant levels have declined and air quality has improved. While air quality is improving, we face new challenges. The Environmental Protection Agency (EPA) regularly revises national ambient air quality standards as directed by the Clean Air Act to protect public health.

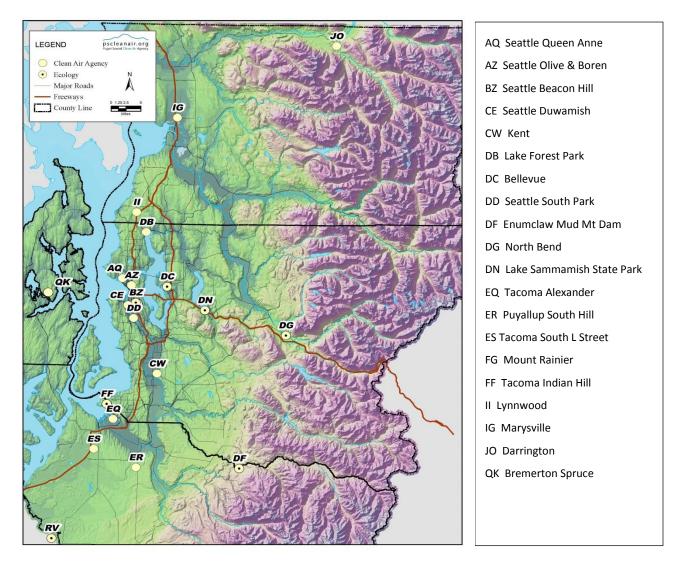
¹Washington Administrative Code 173-460. See Table of Toxic Air Pollutants, WAC 173-425-150. <u>apps.leg.wa.gov/WAC/default.aspx?cite=173-460-150</u>

²The Agency's jurisdiction covers King, Kitsap, Pierce, and Snohomish Counties in Washington State.

Elevated fine particle levels pose the greatest air quality challenge in our jurisdiction. While fine particle levels met EPA's health-based standard of 35 micrograms per cubic meter in 2013, sites in three of four counties (King, Pierce and Snohomish) continued to exceed the Agency's more stringent local PM_{2.5} health goal of 25 micrograms per cubic meter. In 2013, our Kitsap County monitor met the Agency's local PM_{2.5} health goal.

Ozone levels remain a concern in our region. Over the last decade, ozone concentrations have not decreased as significantly as other pollutants. The Enumclaw Mud Mountain monitor has the highest regional ozone concentrations. EPA is expected to propose a more protective health-based standard in 2014.

Air toxics were present in our air at levels that posed adverse health effects. These health effects include, but are not limited to, increased cancer risk and respiratory effects.


The Agency's jurisdiction is currently in attainment for carbon monoxide, ozone, lead, sulfur dioxide, and PM_{10} . In 2013, we have one nonattainment area (the Tacoma-Pierce County $PM_{2.5}$ area).

Monitoring Network

The Agency and Ecology operated the Puget Sound region's monitoring network in 2013. The network is comprised of meteorological, pollutant-specific equipment, and equipment for special studies. Data from the network are normally collected automatically via the Ecology data network, or in some cases, collected manually by field staff. Monitoring stations are located in a variety of geographic locations in the Puget Sound region. Monitors are sited according to EPA criteria to ensure a consistent and representative picture of air quality.

King, Pierce, Snohomish, and Kitsap County monitoring sites used in 2013 are shown in Map 1 and Table 1, Monitoring Network for 2013. A more interactive map is available at http://www.pscleanair.org/airquality/ourairquality/Pages/currentaq.aspx.

The Ozone site (FG) located in Mount Rainier National Park is not shown on this map.

2013 Air Quality Data Summary

Table 1: Air Quality Monitoring Network Parameters 2013

Station ID	Location	PM _{2.5} ref	PM _{2.5} Spec	PM _{2.5} FEM	PM _{2.5} Is	PM _{2.5} bc	O ₃	SO ₂	NO _Y	со	b _{sp}	Wind	Temp	AT	Vsby	Location
AQ	Queen Anne Hill, 400 W Garfield St, Seattle (photo/visibility included)				•						•	•	•		•	a, d, f
AZ	Olive Way & Boren Ave, 1624 Boren Ave, Seattle				•						•	•	•		•	a, d
BW 🖲	Beacon Hill, 4103 Beacon Ave S, Seattle	•	•	•			•	•	•	•		•	•	•		b, d, f
CE	Duwamish, 4401 E Marginal Way S, Seattle			•	•	•					•	•	•		•	a, e
CW	James St & Central Ave, Kent			•	•	•					•	•	•		•	b, d
DB	17171 Bothell Way NE, Lake Forest Park				•						•	•			•	b, d, f
DC ()	305 Bellevue Way NE, Bellevue				•						•				•	a, d
DD	South Park, 8201 10 th Ave S, Seattle				•						•				•	b, e, f
DF ●	30525 SE Mud Mountain Road, Enumclaw						•					•	•			С
DG 🖲	42404 SE North Bend Way, North Bend				•		•				•	•	•		•	c, d, f
DN 🖲	20050 SE 56 th , Lake Sammamish State Park, Issaquah						•									b, d
EQ	Tacoma Tideflats, 2301 Alexander Ave, Tacoma				•	•					•	•			•	a, e
ER	South Hill, 9616 128 th St E, Puyallup				•	•					•	•	•		•	b, f
ES	7802 South L St, Tacoma	•	•	•	•	•					•	•	•		•	b, f
FF 🖲	Tacoma Indian Hill, 5225 Tower Drive NE, northeast Tacoma											•	•			b, f
FG ●	Mt Rainier National Park, Jackson Visitor Center						•									С
IG	Marysville JHS, 1605 7 th St, Marysville		•	•	•	•					•	•	•		•	b, d
II	6120 212 th St SW, Lynnwood			•	•						•	•	•		•	b, d
JO	Darrington High School, Darrington 1085 Fir St			•	•	Ī		1			•	•	•		•	d, f
QK	Spruce, 3250 Spruce Ave, Bremerton			•	•						•	•	•		•	b, f

۲	Station operated by Ecology	SO ₂	Sulfur Dioxide
•	Indicates parameter currently monitored	NOy	Nitrogen Oxides
PM _{2.5} ref	Particulate matter <2.5 micrometers (reference)	со	Carbon Monoxide
PM _{2.5} Spec	Speciation	b _{sp}	Light scattering by atmospheric particles (nephelometer)
PM _{2.5} FEM	Particulate matter <2.5 micrometers (teom-fdms continuous)	Wind	Wind direction and speed
PM _{2.5} ls	Particulate matter <2.5 micrometers (light scattering nephelometer continuous)	Тетр	Air temperature (relative humidity also measured at BW, IG, ES)
PM _{2.5} bc	Particulate matter <2.5 micrometers black carbon (light absorption aethalometer)	AT	Air Toxics
O ₃	Ozone (May through September except Beacon Hill and Mt Rainier)	VSBY	Visual range (light scattering by atmospheric particles)
Location		рното	Visibility (camera)
а	Urban Center		
b	Suburban		
с	Rural		
d	Commercial		
е	Industrial		
f	Residential		

The Agency conducted monitoring as early as 1965. A summary of the monitoring stations and parameters used over the history of the program is on page A-6 of the Appendix. The network changes periodically because the Agency and Ecology regularly re-evaluate monitoring objectives, resources and logistics.

A list of the methods used for monitoring the criteria pollutants is shown on page A-9 of the Appendix. Additional information on these methods is available at EPA's website at <u>epa.gov/ttn/amtic/</u>. Information on air toxics monitoring methods is available at <u>epa.gov/ttn/amtic/</u>.

Air Quality Index

EPA established the air quality index (AQI) as a simplified index for reporting daily air quality. It tells you how clean or polluted your air is and what associated health effects might be a concern for you. The AQI focuses on health effects that you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act: ground-level ozone, particle pollution (also known as particulate matter), carbon monoxide, sulfur dioxide and nitrogen dioxide.

Think of the AQI as a yardstick that runs from 0 to 500. As the AQI increases, the level of air pollution and the health concern increases. An AQI value of 100 generally corresponds to the national air quality standard for the pollutant, which is the level EPA has set to protect public health. AQI values below 100 are generally thought of as satisfactory. When AQI values are above 100, air quality is considered unhealthy first for certain sensitive groups of people, then for everyone as AQI values get higher.

The purpose of the AQI is to help people understand what local air quality means to health. To make it easier to understand, the AQI is divided into six categories:

Air Quality Index (AQI) Values	Levels of Health Concern	Colors
When the AQI is:	air quality condition is:	look for this color:
0 – 50	Good	Green
51 – 100	Moderate	Yellow
101 – 150	Unhoolthy for Consitive Crowns	0
101 - 150	Unhealthy for Sensitive Groups	Orange
151 - 200	Unhealthy	Red

GOOD AQI is 0 – 50: Air pollution poses little or no risk.

MODERATE AQI is 51 - 100: Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people. For example, people who are unusually sensitive to ozone may experience respiratory symptoms.

UNHEALTHY FOR SENSITIVE GROUPS AQI is 101 – 150: Although the general public is not likely to be affected at this AQI range, people with lung disease, older adults and children are at a greater risk from exposure to ozone, whereas persons with heart and lung disease, older adults and children are at greater risk from the presence of particles in the air.

UNHEALTHY AQI is 151 – 200: Everyone may begin to experience some adverse health effects, and members of the sensitive groups may experience more serious effects.

VERY UNHEALTHY AQI is 201 – 300: This would trigger a health alert signifying that everyone may experience more serious health effects.

HAZARDOUS is AQI greater than 300: This would trigger a health warning of emergency conditions. The entire population is more likely to be affected.

Table 2 shows the AQI breakdown by percentage in each category for 2013. King County registered the highest daily AQI value of 152 on November 28th, which was PM_{2.5}. PM_{2.5} normally determines the AQI in the Puget Sound area on days considered unhealthy for sensitive groups.

	AQI Rating (% of year)								
			Unhealthy						
			for						
			Sensitive		Highest				
County	Good	Moderate	Groups	Unhealthy	AQI				
Snohomish	74%	25%	1%	0%	115				
King	61%	38%	1%	0%	152				
Pierce	79%	19%	2%	0%	116				
Kitsap	96%	4%	0%	0%	75				

Table 2: AQI Ratings for 2013

EPA's main intent with development of the AQI is that it is used as a daily indicator or forecast of air quality – it's most useful when used this way. This local, almost-real-time information can be found here: <u>pscleanair.org/airquality/ourairquality</u>.

Most days in the Puget Sound region are in the "Good" category, but local meteorological conditions, along with polluting sources, cause levels to rise into "Moderate" or above. See the appendix for more information on the AQI.

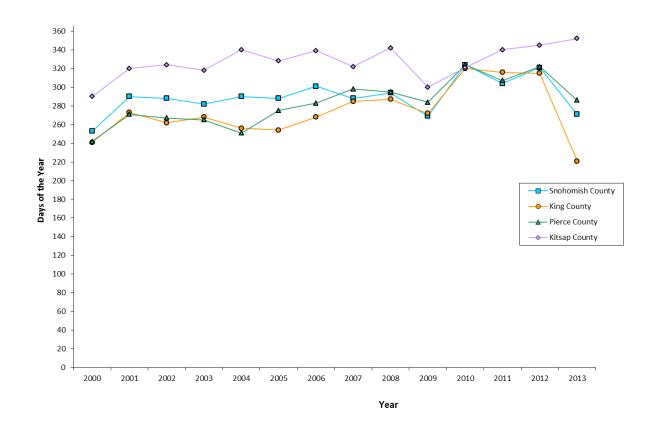


Figure 1: Number of Days Air Quality Rated As "Good" Per AQI

Figure 1 (above) shows the number of days that the AQI fell into the Good category for each of the four counties of our jurisdiction. In 2012 the EPA tightened $PM_{2.5}$ NAAQS, therefore the AQI calculation changed. The drop in number of "Good" AQI days is a result of the AQI calculation change, not a degradation of regional air quality.

Pages A-1 through A-8 of the Appendix present summaries for each county which include "good", "moderate", "unhealthy for sensitive groups", and "unhealthy" days from 1990 to 2013.

Particulate Matter

"Particulate matter," also known as particle pollution or PM, is a complex mixture of extremely small particles and liquid droplets. Particle pollution consists of a number of components, including acids (such as nitrates and sulfates), organic chemicals, metals, and soil or dust particles.

EPA groups particle pollution into two categories. "Inhalable coarse particles," such as those found near roadways and dusty industries, are larger than 2.5 micrometers and smaller than 10 micrometers in diameter. "Fine particles," such as those found in smoke and haze, are 2.5 micrometers in diameter and smaller.

PM_{10}

The Agency ceased direct PM_{10} monitoring in 2006 and focused its efforts on $PM_{2.5}$ monitoring. For a historic look at Puget Sound area PM_{10} levels, please see pages 32-35 of the 2007 data summary which is available upon request.

PM_{2.5} Health and Environmental Effects

An extensive body of scientific evidence shows that exposure to particle pollution is linked to a variety of significant health problems, such as increased hospital admissions and emergency department visits for cardiovascular and respiratory problems, including non-fatal heart attacks and premature death. Older adults, children, pregnant women, and those with pre-existing health conditions are more at risk from exposure to particle pollution. Particle pollution also contributes to haze in cities and some of our nation's most treasured national parks.

Fine particles are emitted directly from a variety of sources, including wood burning (both outside, and in wood stoves and fireplaces), vehicles and industry. They also form when gases from some of these same sources react in the atmosphere.

PM2.5– Federal Reference Method and Continuous Methods

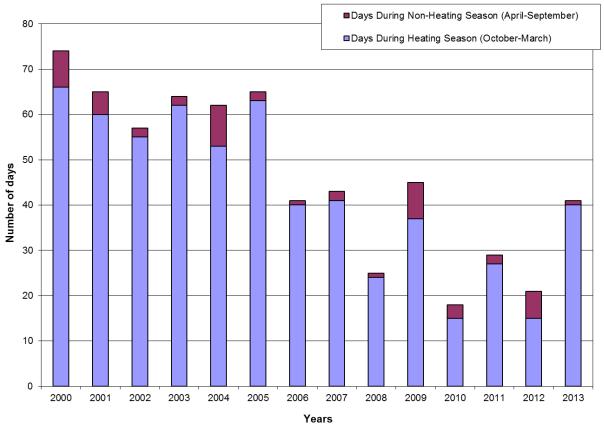
Fine particulate matter (PM_{2.5}) is measured using a variety of methods to ensure quality and consistency. EPA defined the federal reference method (FRM) to be the method used to determine PM_{2.5} concentrations. The reference method is a filter-based method. EPA further defined several federal equivalent methods (FEM), which are continuous instruments operated under specific standard operating procedures. The continuous FEM's advantage is that it provides highly time resolved data (hourly averages).

The Agency uses the FRM, the FEM and a Nephelometer estimation method to provide data. These methods determine fine particulate matter concentration differently:

• The FRM method involves pulling in air (at a given flow rate) for a 24-hour period and collecting particles of a certain size (in this case PM_{2.5}) on a filter. The filter is weighed and the

mass is divided by air volume (determined from flow rate and amount of time) to provide concentration. Particles on the filter can later be analyzed for more information about the types of particulate matter.

- The tapered element oscillating microbalance (TEOM-FDMS) method measures mass and uses a filter dynamic measurement system to eliminate moisture measurements from the sample, allowing the mass to be converted. This is a Federal Equivalent Method (FEM) for PM_{2.5}.
- The nephelometer uses scattering of light in a photomultiplier tube, which is then compared to Reference and Equivalent method data to produce an estimate of PM_{2.5}. While light scattering has been proven to correlate well with PM_{2.5}, this is an "unofficial" method using a surrogate.


The Agency and Ecology work together to evaluate the TEOM-FDMS technology as compared to the reference method. Ecology reports the data to EPA as full equivalent method data.

PM_{2.5} Daily Federal Standard and Health Goal

The EPA set a daily health-based fine particle standard of 35 micrograms per cubic meter (μ g/m³). Monitors in all four counties met this standard in 2013. In addition to the federal standard, our Board of Directors adopted a more stringent health goal based on recommendations from our Particulate Matter Health Committee. Monitors in King, Pierce and Snohomish exceeded the local health goal of 25 μ g/m³ during the 2013 winter season. Our monitor in Kitsap County achieved the local health goal.

Figure 2 shows the number of days the health goal was exceeded annually in the region, from 2000 to 2013. The shading demonstrates that our highest fine particulate days overwhelmingly take place during the winter wood heating months. While the graph indicates that we have made progress reducing the number of days we exceed the health goal, it also shows that we are falling short of our goal of having zero days exceeding the health goal, especially during winter months.

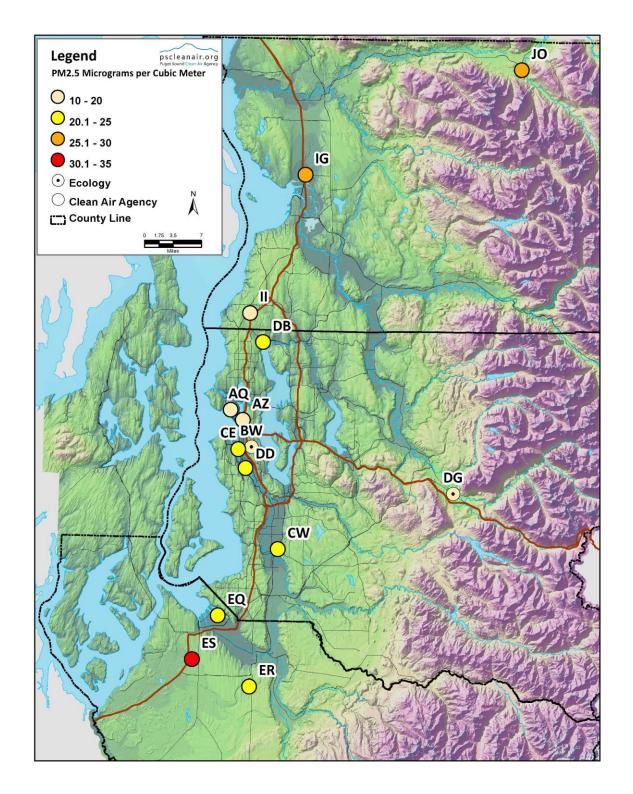


Figure 2: Days Exceeding the PM2.5 Health Goal at One or More Monitoring Sites

Includes data from all sites in King, Kitsap, Pierce, and Snohomish counties, both daily and continuous methods. The Darrington monitor was added in 2004.

Map 2 shows the 98th percentile of the 3-year average of daily PM_{2.5} concentrations. The map includes only those monitoring sites with three years of complete data from 2010 to 2013. This map incorporates data collected from federal reference, federal equivalent, and nephelometer estimate methods.

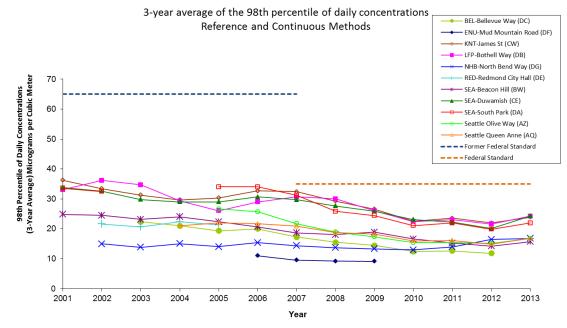
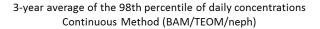
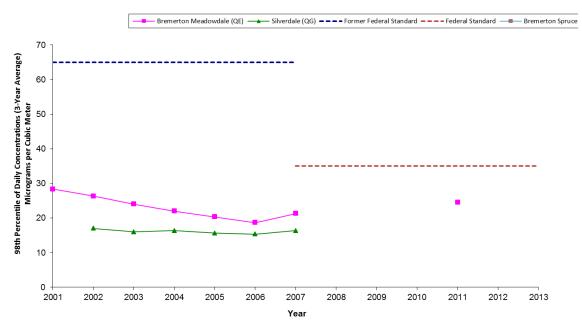

Figures 3 through 6 show daily 98th percentile 3-year averages at each monitoring station in King, Kitsap, Pierce, and Snohomish Counties compared to the current daily federal standard – all are below the standard in 2013. Points on the graphs represent averages for three consecutive years. For example, the value for 2013 is the average of the 98th percentile daily concentration for 2011, 2012, and 2013. These figures incorporate data collected from federal reference, federal equivalent, and nephelometer estimate methods.

Figure 4 does not include a three-year average for Kitsap County in 2008-2010,2012-2013 because the monitor did not meet data completeness criteria or the monitoring site was moved. Kitsap County data shows that PM2.5 levels are below the federal standard.

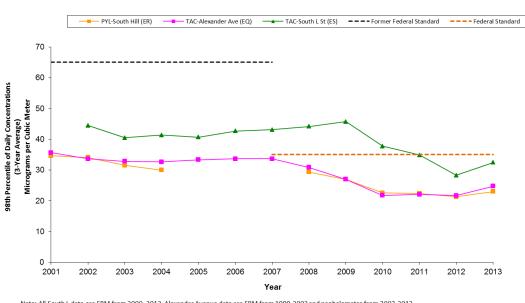
Statistical summaries for 98th percentile daily concentrations for 2013 data are provided on page A-15 through A-17 of the Appendix.



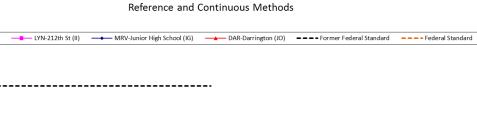

Figure 3: Daily PM_{2.5} for King County

Note: Duwamish (CE) data are FRM from 1999-2009, nephelometer 2010, TEOM-FEM 2011-2013. Beacon Hill (BW) data are FRM from 1999-2013. Lake Forest Park (DB) data are FRM from 1999-2007, neph in 2008-2013. South Park (DA) data are FRM from 1999-2002, (3 yr avg 2004-06 was FRM in 2004, neph in 2005-2013. Bellevue Way (DC) data are FRM from 2001-2004, neph 2005-12. Redmond (DE) data are FRM from 2000-2002, neph from 2003-2005. Queen Anne (AQ) data are neph from 2002-2013. Olive Way (AZ) data are neph from 2003-2013. North Bend (DG) data are FRM from 2000-2004, neph in 2005-2013. Kent (CW) data are FRM from 1999-2004, neph in 2005-2010, TEOM-FEM 2011-2013. Enumclaw (DF) data are from neph in 2000-2009.

Figure 4: Daily PM_{2.5} for Kitsap County



75% of data is required to calculate 98th percentile. Insufficient data available for 2008 so 3 year calculation not available for 2008-2010. 2011-2013 data are TEOM-FEM. Meadowdale site ended 4/30/12, Spruce site began 5/1/2012, 3 year calculation not available.


Figure 5: Daily PM_{2.5} for Pierce County

3-year average of the 98th percentile of daily concentrations Reference and Continuous Methods

Note: All South L data are FRM from 2000- 2013. Alexander Avenue data are FRM from 1999-2002 and nephelometer from 2003-2013. South Hill data are FRM from 1999-2002 and nephelemeter from 2003-2004 and 2006-2013; incomplete nephelometer data was collected from South Hill in 2005.

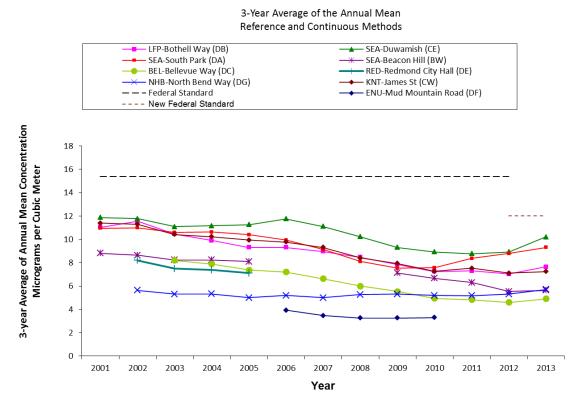
Figure 6: Daily PM_{2.5} for Snohomish County

3-year average of the 98th percentile of daily concentrations

98th Percentile of Daily Concentrations (3-year average) Micrograms per Cubic Meter

Year

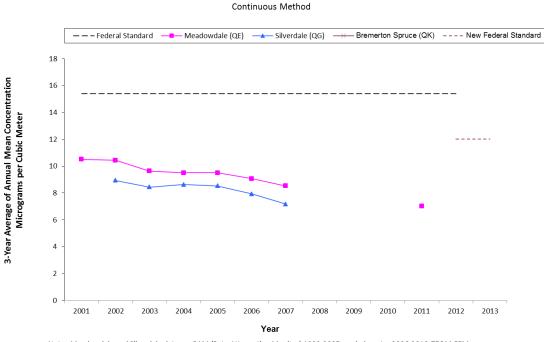
Note: Marysville (IG) data are FRM 999-2011, TEOM-FEM 2012-2013. Lynnwood (II) data are FRM except 2004, 2007-2010 which were nephelometer, TEOM-FEM 2011-2013. Darrington (JO) data are neph in 2006, FRM in 2007-2011, TEOM-FEM 2012-2013.



PM_{2.5} Annual Federal Standard

Figures 7 through 10 show 3-year annual averages at each monitoring station for King, Kitsap, Pierce and Snohomish Counties. In 2012, the EPA strengthened the annual standard from 15 micrograms per cubic meter to 12 micrograms per cubic meter. All counties have levels below the annual standard of 12 micrograms per cubic meter and all counties are in attainment for the annual standard. Figure 8 does not show any 2008, 2009, 2010, 2012 or 2013 data for Kitsap County because the monitor did not achieve data completeness criteria or the monitoring site was relocated.

Figures 7 through 10 show data from the federal reference method (FRM) and continuous method monitors. The federal standard is based on a 3-year average, so each value on the graph is an average for three consecutive years. For example, the value shown for 2013 is the average of the annual averages for 2011, 2012, and 2013.


Figure 7: Annual PM_{2.5} for King County

Note: Lake Forest Park (DB) data are FRM from 1999-2007, nephelometer in 2008-2013. Beacon Hill (BW) data are FRM from 1999-2013. Duwamish (CE) data are FRM from 1999-2009, nephelometer 2010, TEOM-FEM 2011-2013. South Park (DA) data are FRM from 1999-2002, nephelometer from 2003-2013. Redmond (DE) data are FRM from 2000-2002, nephelometer from 2003-2005. Bellevue Way (DC) data are FRM from 2001-2003, nephelometer from 2003-2013. Kent (CW) data are FRM from 1999-2003, nephelometer 2004-2010, TEOM-FEM 2011-2013. North Bend (DG) data are FRM from 2002-2004, nephelometer in 2004-2010, TEOM-FEM 2011-2013. North Bend (DG) data are FRM 2000-2004, nephelometer in 2005-2013.

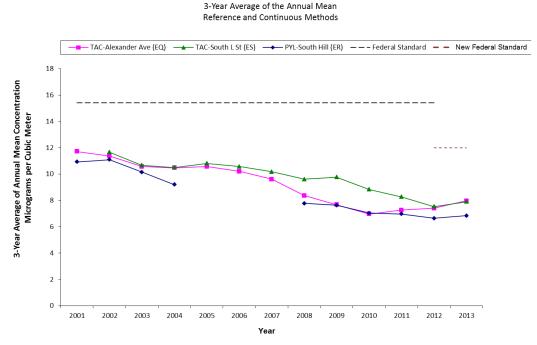
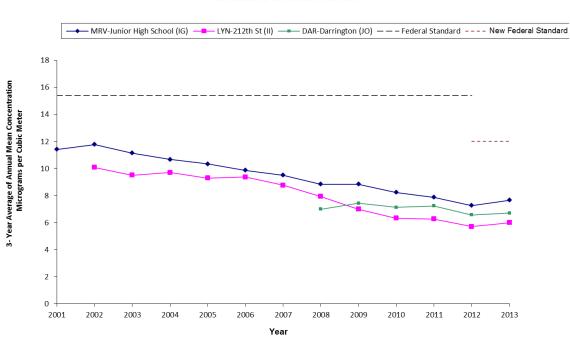


Figure 8: Annual PM_{2.5} for Kitsap County

3-Year Average of the Annual Mean

Figure 9: Annual PM_{2.5} for Pierce County



Note: South L St. (ES) data are FRM. South Hill (ER) data are FRM from 1999-2002. South Hill (ER) data 2003, 2004, 2008-2013 was measured with a nephelometer. Alexander Ave (EQ) data are FRM from 1999-2002, nephelometer from 2003-2010, and TEOM-FEM 2011-2013.

Note: Meadowdale and Silverdale data are BAM (Beta Attenuation Monitor) 1999-2005, nephelometer 2006-2010, TEOM-FEM 2011-2013. Insufficient data in 2008 resulted in the inability to calculate a 3 year average for 2008, 2009, 2010. The Spruce site began in 2012 and insufficient data is available to calculate a 3 year average.

Figure 10: Annual PM_{2.5} for Snohomish County

³⁻Year Average of the Annual Mean Reference and Continuous Methods

PM_{2.5} Continuous Data and Seasonal Variability

Continuous monitoring data provide information on how concentration levels vary throughout the year. For example, many sites have elevated $PM_{2.5}$ levels during the winter when residential burning and air stagnations are at their peak, but have low levels of $PM_{2.5}$ during the summer. For more detailed information on continuous data, please see the Airgraphing tool at http://airgraphing.pscleanair.org/ to plot the sites and timeframes of interest.

Note: Marysville (IG) data are FRM from 1999-2011, TEOM-FEM 2013. Lynnwood (II) data are FRM except 2004, 2007-2011, TEOM-FEM 2012-2013. The 2004, 2007-2011 values for Lynnwood were measured with a nephelometer. Darrington (JO) data are neph in 2006, FRM in 2007 - 2011, TEOM-FEM 2012-2013.

Particulate Matter – PM_{2.5} Speciation and Aethalometers

Although there are no regulatory requirements to go beyond measuring the total mass of fine particulate matter, it is important to know the chemical makeup of particulate matter in addition to its mass. Knowledge about the composition of fine particulate can help to guide emission reduction strategies. Information on fine particulate composition helped guide the Agency's commitment to reduce wood smoke and diesel particulate emissions.^{3,4,5}

Speciation Monitoring and Source Apportionment

Speciation monitoring involves determining the individual fractions of metals and organics in fine particulate matter on different types of filters. Speciation filters are analyzed to determine the makeup of fine particulate at that site. Over 40 species are measured at speciation monitors in the area. These data are used in source apportionment models to estimate contributing sources to PM_{2.5}. Source apportionment models use statistical patterns in data to identify likely pollution sources and then estimate how much each source is contributing at each site.

Ecology conducted speciation monitoring at three monitoring sites in the Puget Sound region in 2013:

- Seattle Beacon Hill typical urban impacts, mixture of sources (speciation samples collected every third day, operated by Ecology)
- Tacoma South L urban residential area, impacts from residential wood combustion (speciation samples collected every sixth day, operated by Ecology)
- Marysville residential area, impacts from wood combustion (speciation samples collected every sixth day, operated by Ecology)

Scientific and health researchers have analyzed speciation data from these sites. In addition to using speciation data for concentrations of specific species or source apportionment modeling, the Agency uses them to qualitatively look at the makeup of fine particulate at our monitoring sites. For a list of PM_{2.5}analytes measured at these sites, please see Appendix A-18.

Aethalometer Data

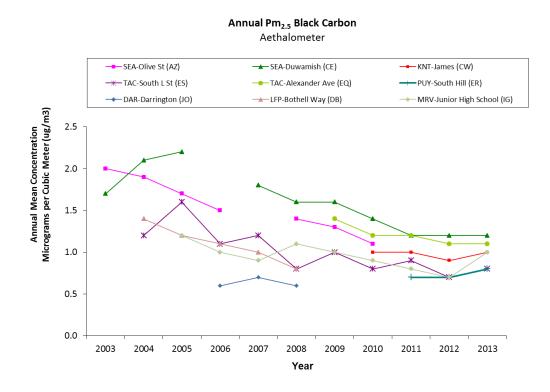
Aethalometers provide information about the carbon fraction of fine particulate matter. Aethalometers continuously measure light absorption to estimate carbon concentrations using two channels, black carbon (BC) and ultraviolet (UV). Concentrations from the black carbon channel correlate well with elemental carbon (EC) speciation data. Qualitatively, the difference between the UV and BC channel (UV-BC) correlates well with organic carbon (OC) speciation data. Elemental and organic carbons are related to diesel particulate, wood smoke particulate and particulate from other

³Puget Sound Air Toxics Evaluation, October 2003.

⁴Tacoma and Seattle Air Toxics Evaluation, October 2010:

epa.gov/ttn/amtic/files/20072008csatam/PSCAA CommunityAssessment FR.pdf.

⁵Ogulei, D. WA State Dept of Ecology (2010). "Sources of Fine Particles in the Wapato Hills-Puyallup River Valley PM_{2.5} Nonattainment Area". PublicationNumber 10-02-009.



combustion sources.⁶ Unfortunately, neither is uniquely attributed to a particular combustion type – so the information gained from aethalometer data is largely qualitative.

The Agency maintains aethalometers at monitoring sites with high particulate matter concentrations, as well as sites with speciation data, so that the different methods to measure carbon may be compared. For more information on aethalometers, refer to our aethalometer monitoring paper which is available upon request.

Figure 11 shows annual average trending of black carbon concentrations. Since 2003, the general trend shows reducing BC levels. A statistical summary of aethalometer black carbon data is presented on page A-19 of the Appendix.

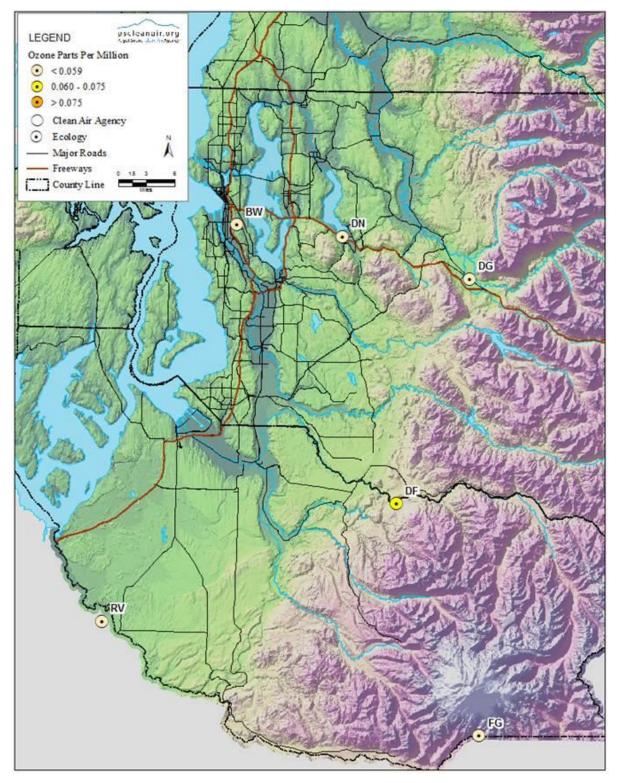
Figure 11: Annual PM_{2.5} Black Carbon

⁶Urban Air Monitoring Strategy – Preliminary Results Using Aethalometer™ Carbon Measurements for the Seattle Metropolitan Area

Ozone

Ozone is a summertime air pollution problem in our region and is not directly emitted by pollutant sources. Ozone forms when photochemical pollutants react with sunlight. These pollutants are called ozone precursors and include volatile organic compounds (VOC) and nitrogen oxides (NO_x), with some influence by carbon monoxide (CO). These precursors come from anthropogenic sources such as mobile sources and industrial and commercial solvent use, as well as natural sources (biogenic). Ozone levels are usually highest in the afternoon because of the intense sunlight and the time required for ozone to form in the atmosphere. The Washington State Department of Ecology conducts the ozone monitoring in our counties.

People sometimes confuse upper atmosphere ozone with ground-level ozone. Stratospheric ozone helps to protect the earth from the sun's harmful ultraviolet rays. In contrast, ozone formed at ground level is unhealthy. Elevated concentrations of ground-level ozone can cause reduced lung function and respiratory irritation, and can aggravate asthma.⁷ Ozone has also been linked to immune system impairment.⁸ People with respiratory conditions should limit outdoor exertion if ozone levels are elevated. Even healthy individuals may experience respiratory symptoms on a high-ozone day. Ground-level ozone can also damage forests and agricultural crops, interfering with their ability to grow and produce food.⁹


Most ozone monitoring stations are located in rural areas of the Puget Sound region, although the precursor chemicals that react with sunlight to produce ozone are generated primarily in large metropolitan areas (mostly by cars and trucks). The photochemical formation of ozone takes several hours. Thus, the highest concentrations of ozone are measured in the communities downwind of these large urban areas. In the Puget Sound region, the hot sunny days favorable for ozone formation also tend to have light north-to-northwest winds. Precursors are transported downwind from their source by the time the highest ozone concentrations have formed in the afternoon and early evening. As shown on Map 3, the highest ozone concentrations occur at the Enumclaw monitor southeast of the urban area.

⁷EPA, Air Quality Index: A Guide to Air Quality and Your Health; <u>epa.gov/airnow/aqi brochure 02-14.pdf</u>.

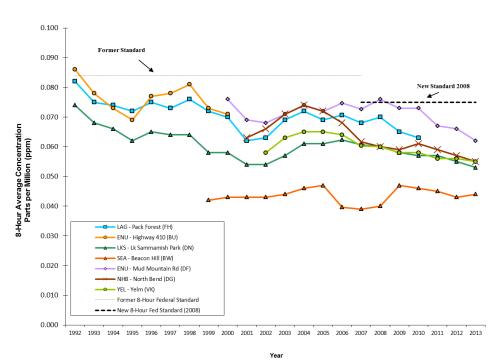
⁸EPA Health and Environmental Effects of Ground Level Ozone; <u>epa.gov/ttn/oarpg/naaqsfin/o3health.html</u>.

⁹EPA Health and Environmental Effects of Ground Level Ozone; <u>epa.gov/ttn/oarpg/naaqsfin/o3health.html</u>.

Map 3: Ozone 3-year Average of 4th Highest 8-hr Value for 2013

Figure 12 presents data for each monitoring station and the 8-hour federal standard. EPA revised its 8-hour standard from 0.08 parts per million (ppm) to 0.075 ppm in March 2008. The federal standard is based on the 3-year average of the 4th highest 8-hour concentration, called the "design value". The year on the x-axis represents the last year averaged. For example, concentrations shown for 2008 are an average of 2006, 2007 and 2008 4th highest concentrations. The highest 2013 site design value is 0.062 ppm at the Enumclaw site, which does not violate the 2008 standard. The highest 2013 8-hour ozone concentration of 0.073 ppm was recorded at the Enumclaw Mud Mountain monitor.

For 2013, the Puget Sound area is below EPA's 0.075 ppm 8-hour standard.


Figure 13 presents 8-hour average data for the months of May through September, the months when ozone levels are greatest in the Puget Sound.

Statistical summaries for 8-hour average ozone data are provided on page A-20 of the Appendix.

For additional information on ozone, visit epa.gov/air/ozonepollution.

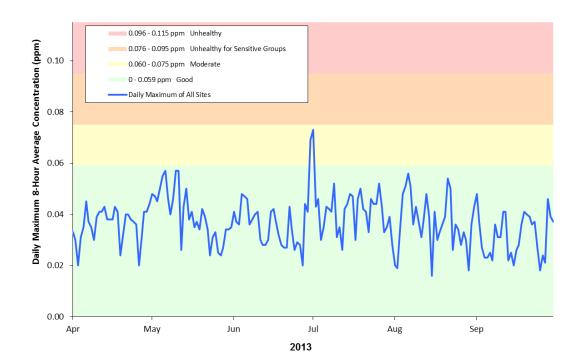


Figure 12: Ozone for Puget Sound Region

3-Year Average of the $4^{\rm th}$ Highest Daily Maximum 8-hour Annual Concentration vs Standard

Figure 13: Ozone (O₃) for Puget Sound Region April-September 2013

Nitrogen Dioxide

Nitrogen dioxide (NO_2) is a reddish brown, highly reactive gas that forms from the reaction of nitrogen oxide (NO) and hydroperoxy (HO_2) and alkylperoxy (RO_2) free radicals in the atmosphere. NO_2 can cause coughing, wheezing and shortness of breath in people with respiratory diseases such as asthma.¹⁰ Long-term exposure can lead to respiratory infections.

The term NO_x is defined as $NO + NO_2$. NO_x participates in a complex chemical cycle with volatile organic compounds (VOCs) which can result in the production of ozone. NO_x can also be oxidized to form nitrates, which are an important component of fine particulate matter. On-road vehicles such as trucks and automobiles and off-road vehicles such as construction equipment, marine vessels and port cargo-handling equipment are the major sources of NO_x . Industrial boilers and processes, home heaters and gas stoves also produce NO_x .

Motor vehicle and non-road engine manufacturers have been required by EPA to reduce NO_x emissions from cars, trucks and non-road equipment. As a result, emissions have been reduced dramatically since the 1970s.

Ecology maintains one monitoring site for nitrogen dioxide at the Beacon Hill station. In 2007, the monitoring technique and equipment changed to record NO_y instead of NO_x , in order to observe all reactive nitrogen compounds. NO_y is NO_x plus all other reactive nitrogen oxides present in the atmosphere. NO_y components such as nitric acid (HNO₃) and peroxyacetyl nitrate (PAN) can be important contributors to the formation of ozone and fine particulate matter. The additional nitroxyl compounds are generally present in much lower concentrations than NO_2 (or NO_x).

Figure 14 shows NO₂ concentrations through 2005. In 2006, no data were recorded due to the relocation of the Beacon Hill monitor to a different location on the same property. From 2007 onward, the concentration of NO₂ is represented as NO_y – NO, since NO₂ is no longer directly recorded, and NO_y = NO + NO₂ + other nitroxyl compounds. The annual average for each year has consistently been less than half of the federal standard, as shown in Figure 14 and in the statistical summary on page A-21 of the Appendix.

The maximum 1-hour average of $NO_y - NO$, measured in 2013, was 0.058 ppm on April 25. Visit <u>epa.gov/air/nitrogenoxides/</u> for additional information on NO_2 .

EPA promulgated a 1-hour national ambient air quality standard for nitrogen dioxide on January 22, 2010.¹¹ The new 1-hour standard is 100 ppb. The design value is calculated by following the procedures in the Federal Register. EPA retained the current annual health-based standard for nitrogen dioxide of 53 ppb (0.053 ppm). Nitrogen dioxide levels in the Puget Sound region, as currently monitored by Ecology, are typically below (cleaner than) the levels in the new standard. The new standard is depicted in Figure 15 with historical data since 1998. The years prior to 2010 have been included on the graphs for historical comparison; the new air quality standard applies to 2010 and subsequent years.

¹⁰EPA, Airnow, NO_X Chief Causes for Concern; <u>epa.gov/air/nitrogenoxides/</u>

¹¹EPA. New 1-hour National Ambient Air Quality Standards for Nitrogen Dioxide; <u>epa.gov/air/nitrogenoxides/actions.html#jan10</u>, accessed September, 2010.

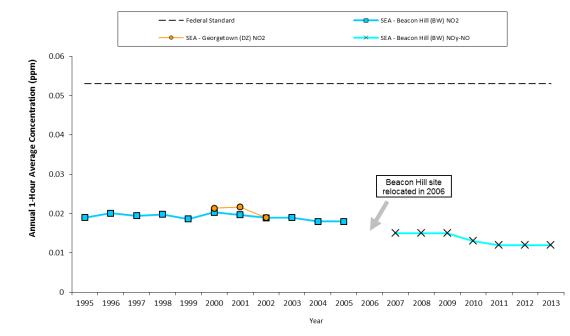
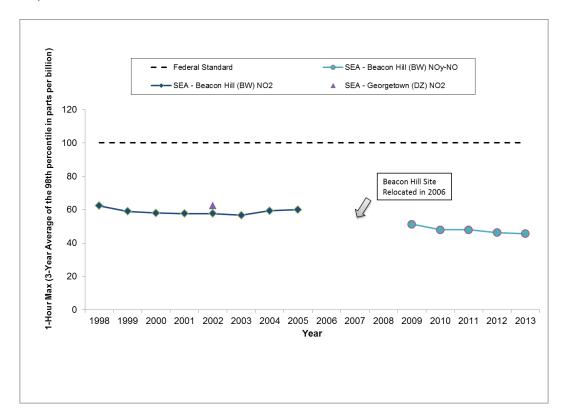



Figure 14: Annual Nitrogen Dioxide (NO₂) (1995-2005) and Reactive Nitrogen (NO_y – NO) (2007-Present)

Figure 15: 2010 1-Hour Maximum Standard for Nitrogen Dioxide (NO₂) (1995-2005) and Reactive Nitrogen (NO_y – NO) (2007-Present)

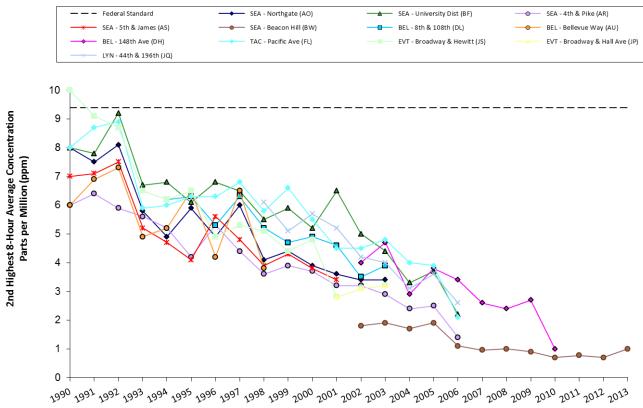
Carbon Monoxide

Carbon monoxide (CO) is an odorless, colorless gas that can enter the bloodstream through the lungs and reduce the amount of oxygen that reaches organs and tissues. Carbon monoxide forms when the carbon in fuels does not burn completely. The vast majority of CO emissions come from motor vehicles.

Elevated levels of CO in ambient air occur more frequently in areas with heavy traffic and during the colder months of the year when temperature inversions are more common. People with cardiovascular disease or respiratory problems may experience chest pain and increased cardiovascular symptoms, particularly while exercising, if CO levels are high. High levels of CO can affect alertness and vision even in healthy individuals.

Although urban portions of the Puget Sound region historically violated the CO standard, CO levels have decreased significantly primarily due to emissions controls on car engines. EPA designated the Puget Sound region as a CO attainment area in 1996. Ecology has substantially reduced its CO monitoring network, and only the Beacon Hill site operated during 2013.

The CO national ambient air quality standard is based on the 2nd highest 8-hour average. Figure 16 shows the 2nd highest 8-hour concentrations and the federal standard (9 ppm) for the Puget Sound region. There currently are no CO monitoring stations in Kitsap, Pierce, or Snohomish Counties.


The maximum 8-hour concentration for CO in 2013 was 1.0 parts per million (ppm) and occurred on January 22 at the Seattle Beacon Hill site.

The EPA federal standards also include a 1-hour standard for CO of 35 ppm, not to be exceeded more than once a year. Measured 1-hour concentrations in the Puget Sound area are historically much lower than the 35 ppm standard.

Statistical summaries for 8-hour average CO data are provided on page A-22 of the Appendix. For additional information on CO, visit <u>epa.gov/air/urbanair/co/index.html</u>.

Figure 16: Carbon Monoxide (CO): 2nd Highest Annual 8-hour Value for Puget Sound Region

2nd Highest 8-Hour Concentration vs Standard

Year

Sulfur Dioxide

Sulfur dioxide (SO₂) is a colorless, reactive gas produced by burning fuels containing sulfur, such as coal and oil, and by industrial processes. Historically, the greatest sources of SO₂ were industrial facilities that derived their products from raw materials such as metallic ore, coal and crude oil, or that burned coal or oil to produce process heat (petroleum refineries, cement manufacturing and metal processing facilities). Marine vessels, on-road vehicles and diesel construction equipment are the main contributors to SO₂ emissions today.

 SO_2 may cause people with asthma who are active outdoors to experience bronchial constriction, where symptoms include wheezing, shortness of breath and tightening of the chest. People should limit outdoor exertion if SO_2 levels are high. SO_2 can also form sulfates in the atmosphere, a component of fine particulate matter.

The Puget Sound area has experienced a significant decrease in SO_2 from sources such as pulp mills, cement plants and smelters in the last two decades. Additionally, levels of sulfur in diesel and gasoline fuels have decreased due to EPA regulations. The Puget Sound Clean Air Agency stopped monitoring for SO_2 in 1999 because of these decreases. Monitoring sites for SO_2 were historically sited in or near industrial areas. Ecology monitored SO_2 at the Beacon Hill site from 2000-2005. In 2006, the SO_2 monitor was relocated to a different location on the same property. The monitor was not operating most of 2006 so no data are reported for that year.

EPA changed the SO₂ standard in June of 2010 to a more short-term (1-hour) standard and revoked the annual and daily average standards. Historic comparisons to federal and Washington State standards can be seen in our 2009 data summary which is available upon request.

The new standard is a 3-year average of the 99th percentile of the daily 1-hour maximum concentrations. Levels must be below 0.075 ppm. Demonstration of attainment is determined from the 2008-2010 data. The Seattle Beacon Hill site is below the new standard.


Figure 17 shows the maximum 3-year average of the 99^{th} percentile of 1-hour maximum concentrations at Beacon Hill. The maximum measured SO₂ concentrations in 2013 were below standards.

Statistical summaries for SO₂ data from the Beacon Hill site are available on page A-23 of the Appendix.

Additional information on SO₂ is available at <u>epa.gov/air/sulfurdioxide/</u>.

Figure 17: Sulfur Dioxide (SO₂) 1-Hour Maximum Concentrations (3-Year Average of the 99th Percentile) for the Puget Sound Region

3-Year Average of 99th Percentile of 1-Hour Average Daily Maximum vs Primary Standard Measured at Beacon Hill - Seattle

Lead

Lead is a highly toxic metal that was used for many years in household products (e.g. paints), automobile fuel and industrial chemicals. Nationally, industrial processes, particularly primary and secondary lead smelters and battery manufacturers, are now responsible for most of the remaining lead emissions. Lead from aviation gasoline used in small aircraft is also of concern nationally.

People, animals and fish are mainly exposed to lead by breathing and ingesting it in food, water, soil or dust. Lead accumulates in the blood, bones, muscles and fat. Infants and young children are especially sensitive to even low levels of lead. Lead can have health effects ranging from behavioral problems and learning disabilities to seizures and death.

According to EPA, the primary sources of lead exposure are lead-based paint, lead-contaminated dust and lead-contaminated residual soils. See the EPA website at epa.gov/ttnatw01/hlthef/lead.html for ways to limit your exposure to these lead sources.

Since the phase-out of lead in fuel and the closure of the Harbor Island secondary lead smelter, levels of lead in ambient air have decreased substantially. For a historic look at the Puget Sound region's lead levels, please see page 87 of the 2007 Air Quality Data Summary which is available upon request.

In October 2008, EPA strengthened the lead standard from 1.5 μ g/m³ to 0.15 μ g/m³ (rolling threemonth average).¹² As part of this rulemaking, EPA initiated a pilot lead monitoring program that focuses on lead from aviation gasoline at small airports, including two in our region. For additional information on lead, visit <u>epa.gov/air/lead</u>.

Washington Department of Ecology conducted monitoring of lead at two airports as part of a national EPA study. Results of the study are available at https://fortress.wa.gov/ecy/publications/SummaryPages/1302040.html

¹²US EPA, National Ambient Air Quality Standard for Lead, Final Rule. Federal Register, November 12, 2008; <u>http://www.gpo.gov/fdsys/pkg/FR-2008-11-12/pdf/E8-25654.pdf</u>

Visibility

Visibility data is presented as an indicator of air quality. Visibility is explained in terms of visual range and light extinction. *Visual range* is the maximum distance, usually miles or kilometers, that you can see a black object against the horizon. *Light extinction* is the sum of light scattering and light absorption by fine particles and gases in the atmosphere. The more light extinction, the shorter the visual range. Visual range as measured by nephelometer instruments using light-scattering methodology provides one approach to measuring visibility at a specific location.

Reduced visibility is caused by weather such as clouds, fog, rain and air pollution, including fine particles and gases. The major contributor to reduced visual range is fine particulate matter ($PM_{2.5}$), which is present near the ground, can be transported aloft and may remain suspended for a week or longer. Figures 18 through 22 show visibility for the overall Puget Sound area, as well as King, Kitsap, Pierce and Snohomish Counties. Visibility on these graphs, in units of miles, is determined by continuous nephelometer monitoring. The nephelometer measures light scattering due to particulate matter (b_{sp}), and this value is converted into estimates of visibility in miles. Nephelometer data are shown on page A-17 of the Appendix.

The red line represents the monthly average visibility. The large fluctuations are due to seasonal variability. The blue line shows the average of the previous 12-months. This moving average reduces seasonal variation and allows longer-term trends to be observed. The moving average shows that the visibility for the Puget Sound area has steadily increased (improved) over the last decade with some year-to-year variability. For the 23-year period from December 1990 through December 2013, the 12-month moving average increased from 47 miles to 78 miles.

For additional information on visibility, visit epa.gov/air/visibility/index.html.

Figure 18: Puget Sound Visibility

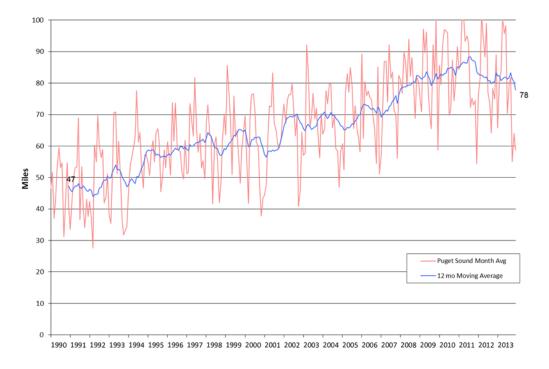
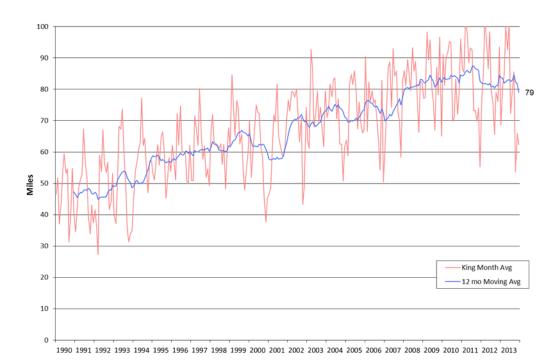



Figure 19: King County Visibility

Figure 20: Kitsap County Visibility

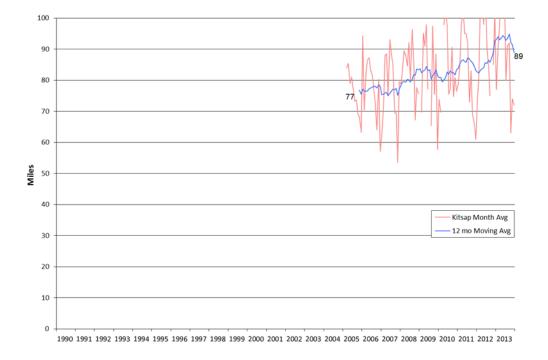
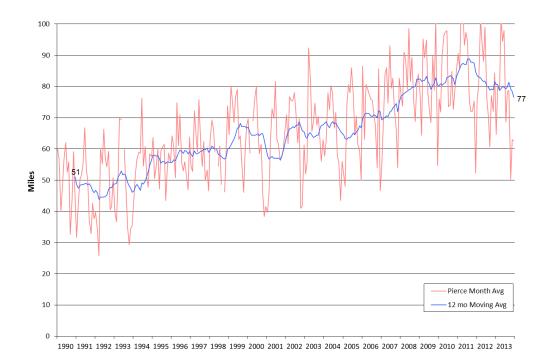
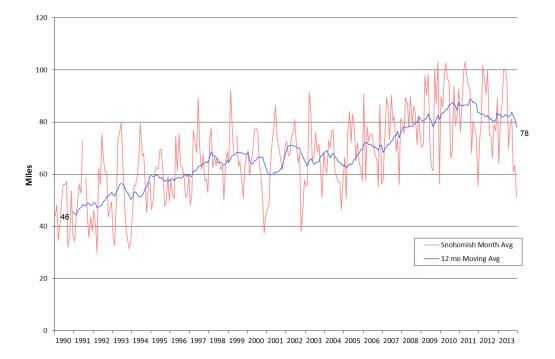




Figure 21: Pierce County Visibility

Air Toxics

"Air toxics" are air pollutants known or suspected to cause health problems. Potential health effects include cancer, birth defects, lung damage, immune system damage, and nerve damage.¹³ The Agency considers over 400 different air pollutants as air toxics.

This section presents a relative ranking of these toxics based on potential cancer health risks, as well as trends over time. We provide a short description of each air toxic of concern, including their health effects and sources.

The Washington State Department of Ecology (Ecology) monitors for air toxics annually at the Seattle Beacon Hill site. The Beacon Hill site is one of 30 EPA-sponsored National Air Toxic Trends Sites. As in previous years, Ecology monitored toxics every six days. The 2006 dataset is incomplete due to relocation of the Beacon Hill site that year. For general information on air toxics, see <u>pscleanair.org/airquality/airqualitybasics/airtoxics/Pages/default.aspx</u>. Air toxics statistical summaries are provided starting on page A-24 of the Appendix.

Relative ranking based on cancer risk & unit risk factors

Table 3 below ranks 2013 air toxics from the Beacon Hill monitoring site according to mean potential cancer risk per million. It shows monitored pollutants ranked from highest concern (#1) to lowest, based on ambient concentrations multiplied by unit risk factors. A unit risk factor takes into account how toxic a pollutant is. Potential cancer risk estimates are shown here to provide a meaningful basis of comparison between pollutants and are not intended to represent any one community or individual exposure.

Potential cancer risk is an estimate of the number of potential additional cancers (out of a population of one million) that may develop from exposure to air toxics over a lifetime (set at 70 years). A risk level of one in a million is commonly used as a screening value, and is used here.¹⁴

For details on how air toxics were ranked, please see pages A-25 and A-26 in the Appendix.

Risks presented in this table are based on annual average ambient (outside) concentrations. Risks based on 95th percentile concentrations (a more protective statistic than presented in Table 3) are presented on page A-26 of the Appendix. Page A-26 also lists the frequency (percentage) of samples that were over the cancer screening level of one in a million risk.

¹³ US EPA, About Air Toxics, Health, and Ecological Effects, <u>http://www.epa.gov/air/toxicair/newtoxics.html</u>.

¹⁴ US EPA, A Preliminary Risk-Based Screening Approach for Air Toxics Monitoring Datasets. EPA-904-B-06-001, February 2006; epa.gov/region4/air/airtoxic/Screening_111610_KMEL.pdf

Air Toxic	Rank	Average Potential Cancer Risk ^a
Carbon Tetrachloride	1	29
Benzene	2	16
1,3-Butadiene	3	13
Cadmium (PM ₁₀) ^b	4	9 ^b
Arsenic (PM ₁₀)	5	3
Chloroform	5	3
Chromium VI (TSP) ^c	5	3 ^c
Formaldehyde	5	3
Acetaldehyde	9	2
Ethylene Dichloride	9	2
Naphthalene	9	2
Acrylonitrile ^d	10	1 ^d
Dichloromethane	10	1
Nickel (PM ₁₀)	10	1

Table 3: 2013 Beacon Hill Air Toxics Ranking(Average Potential Cancer Risk Estimate per 1,000,000)

^aRisk based on unit risk factors as adopted in Washington State Acceptable Source Impact Level (WAC 173-460-150)¹⁵

^bFor cadmium, an outlier sampled on 11/18/13 was included in this estimate. On that day, no other metal concentrations were statistical outliers compared to their annual variability. With the outlier excluded, the estimated annual potential cancer risk for cadmium would be < 1.

^CChromium VI monitoring was discontinued on June 30th and this reflects only the concentrations from the first half of 2013.

^dFor acrylonitrile, an outlier sampled on 8/2/13 was included in this estimate and it accounts for all the risk in this annual average. All the other samples were below detection and well below the risk threshold of one per million.

 PM_{10} = fine particles less than 10 micrometers in diameter TSP = total suspended particulate

The two air toxics that present the majority of potential health risk in the Puget Sound area, diesel particulate matter and wood smoke particulate, are not included in the table. No direct monitoring method currently exists for these toxics. Modeling for these air toxics was not conducted for this report.

¹⁵Washington State Administrative Code WAC 173-460-150, <u>apps.leg.wa.gov/WAC/default.aspx?cite=173-460-150</u>

Health effects other than cancer

Air toxics can also have chronic non-cancer health effects. These include respiratory, cardiac, immunological, nervous system and reproductive system effects.

In order to determine non-cancer health risks, we compared each air toxic to its reference concentration, as established by California EPA (the most comprehensive dataset available). A reference concentration (RfC) is considered a safe level for toxics for non-cancer health effects.

Only one air toxic, acrolein, failed the screen for non-cancer health effects, with measured concentrations consistently exceeding the reference concentration. Acrolein irritates the lungs, eyes, and nose, and is a combustion by-product.¹⁶ Unfortunately, acrolein measurements have large uncertainty and is one of the most difficult pollutants to measure.¹⁷ Therefore, for acrolein, we did not explore a trend analysis as the results are likely all within the uncertainty of the measurement.

Reference concentrations and hazard indices are shown for each air toxic on page A-27 of the Appendix. A hazard index is the concentration of a pollutant (either mean or other statistic) divided by the reference concentration. Typically, no adverse non-cancer health effects for that pollutant are associated with a hazard index less than 1, although it is important to consider that people are exposed to many pollutants at the same time.

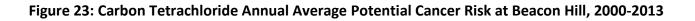
We did not explore acute non-cancer health effects, because the Beacon Hill air toxics concentrations are based on 24-hour samples.

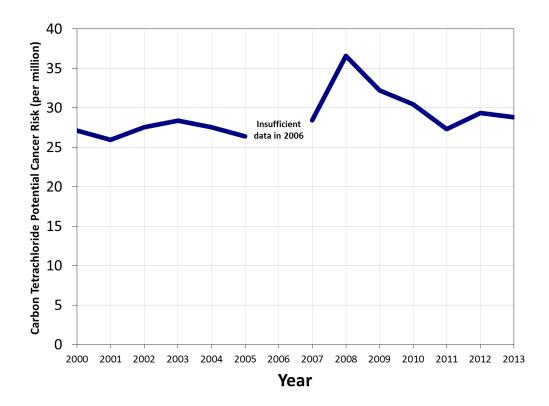
Air toxics trends

Annual average potential cancer risks are shown on the following pages for air toxics collected from 2000 to 2013 at Beacon Hill. For many air toxics, our analysis of the trends shows a statistically significant decrease in annual average concentrations.

EPA has not set ambient air standards for air toxics, so graphs do not include reference lines for federal standards. The statistical results can be found on page A-28 of the Appendix.

¹⁶EPA, Acrolein Hazard Summary; <u>epa.gov/ttn/atw/hlthef/acrolein.html</u>.


¹⁷EPA, Schools Monitoring Initiative Acrolein Update, <u>http://www.epa.gov/schoolair/pdfs/acroleinupdate.pdf</u>.

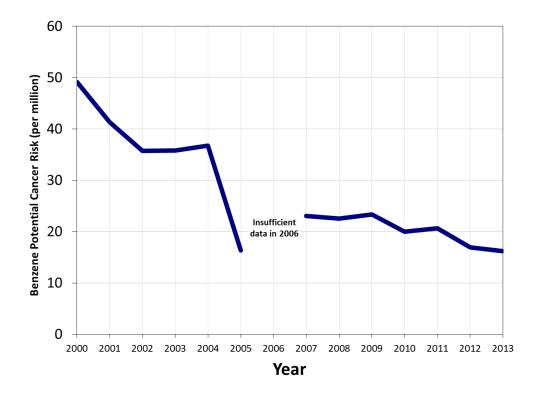


Carbon Tetrachloride

The EPA lists carbon tetrachloride as a probable human carcinogen. Carbon tetrachloride inhalation is also associated with liver and kidney damage.¹⁸ It was widely used as a solvent for both industry and consumer users and was banned from consumer use in 1995. Trace amounts are still emitted by local sewage treatment plants. Carbon tetrachloride is relatively ubiquitous and has a long half-life and concentrations are similar in urban and rural areas. Carbon tetrachloride's 2013 average potential cancer risk estimate at Beacon Hill was 29 in a million.

The Agency does not target efforts at reducing carbon tetrachloride emissions, as carbon tetrachloride has already been banned. We did not find a statistically significant trend in carbon tetrachloride levels over time.

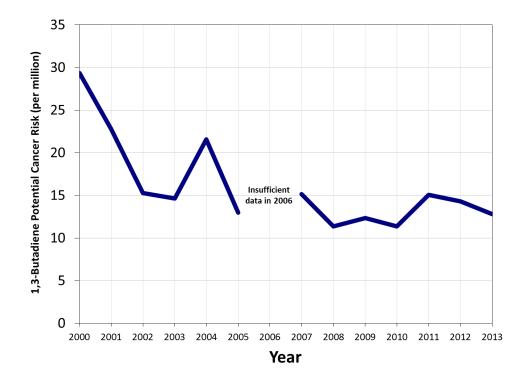
¹⁸EPA Hazard Summary; <u>epa.gov/ttn/atw/hlthef/carbonte.html</u>.



Benzene

The EPA lists benzene as a known human carcinogen. Benzene inhalation is also linked with blood, immune and nervous system disorders.¹⁹ This air toxic comes from a variety of sources, including car/truck exhaust, wood burning, evaporation of industrial solvent and other combustion. Benzene's 2013 average potential cancer risk range estimate at Beacon Hill was 16 in a million.

Benzene levels are likely decreasing in our area due to factors including: less automobile pollution with cleaner vehicles coming into the fleet, better fuels and fewer gas station emissions due to better compliance (vapor recovery at the pump and during filling of gas station tanks). We found a statistically significant drop in risk from benzene at a rate of about two per million per year since 2000.

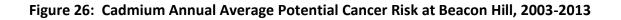

¹⁹EPA Hazard Summary; <u>epa.gov/ttn/atw/hlthef/benzene.html</u>.

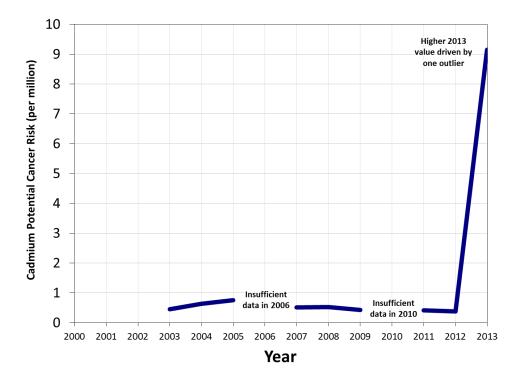
1,3-Butadiene

The EPA lists 1,3-butadiene as a known human carcinogen. 1,3-butadiene inhalation is also associated with neurological effects.²⁰ Primary sources of 1,3-butadiene include cars, trucks, buses and wood burning. 1,3-butadiene's 2013 average potential cancer risk estimate at Beacon Hill was 13 in a million.

Agency efforts that target vehicle exhaust and wood stove emission reductions also reduce 1,3butadiene emissions. Since 2000, we found a statistically significant drop in risk from 1,3butadiene at a rate of about one per million per year.

²⁰EPA Hazard Summary; <u>epa.gov/ttnatw01/hlthef/butadien.html</u>.



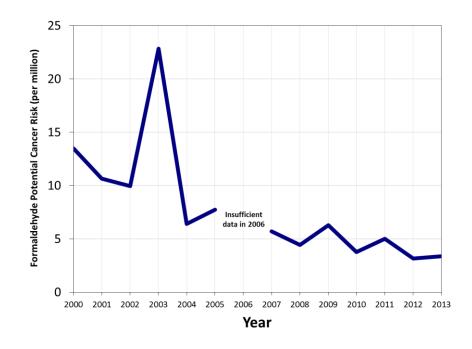

Cadmium

EPA lists cadmium as a probable human carcinogen. Cadmium exposures are also associated with kidney damage.²¹ Combustion of distillate oil is a main source of cadmium in the Puget Sound area.

Cadmium's 2013 average potential cancer risk estimate at Beacon Hill was 9 in a million. A sampled outlier on 11/18/13 was included in this estimate. On that day, no other metal concentrations were statistical outliers compared to their respective annual variability. With the outlier excluded, the estimated annual potential cancer risk for cadmium would be < 1 as in the historical trend below. With or without the outlier included, we found no statistically significant trend for cadmium. Over half the samples in 2010 were below the detection limits and did not have sufficient data to make a comparible average.

The Agency's permitting program works with and regulates industrial producers of cadmium to reduce emissions.

²¹EPA Hazard Summary; <u>epa.gov/ttn/atw/hlthef/cadmium.html</u>.


Formaldehyde

The EPA lists formaldehyde as a probable human carcinogen. Formaldehyde inhalation is also associated with eye, nose, throat and lung irritation.²² Sources of ambient formaldehyde include automobiles, trucks, wood burning and other combustion. Formaldehyde's 2013 average potential cancer risk range estimate at Beacon Hill was 3 in a million.

The increase in formaldehyde 2003 concentrations is due to 9 anomalous sampling days in July 2003 when levels were roughly ten times the normal levels. It is possible that a local formaldehyde source was present at the Beacon Hill reservoir during this month and inadvertently affected the monitors.

Agency efforts that target vehicle exhaust and wood stove emission reductions also reduce formaldehyde emissions. Since 2000, we found a statistically significant drop in risk from formaldehyde at a rate of about one per million per year.

Figure 27: Formaldehyde Annual Average Potential Cancer Risk at Beacon Hill, 2000-2013

²²EPA Hazard Summary; <u>epa.gov/ttn/atw/hlthef/formalde.html</u>.

Arsenic

EPA lists arsenic as a known carcinogen. Exposure to arsenic is also associated with skin irritation and liver and kidney damage.²³ Arsenic is used to treat wood. Combustion of distillate oil is also a source of arsenic in the Puget Sound area. Arsenic's 2013 average potential cancer risk range estimate at Beacon Hill was 3 in a million. We did not find a statistically significant trend in arsenic levels over time.

We enforce illegal burning practices to limit arsenic emissions in Puget Sound. The Agency's permitting program also works with and regulates industrial producers of arsenic to reduce emissions.

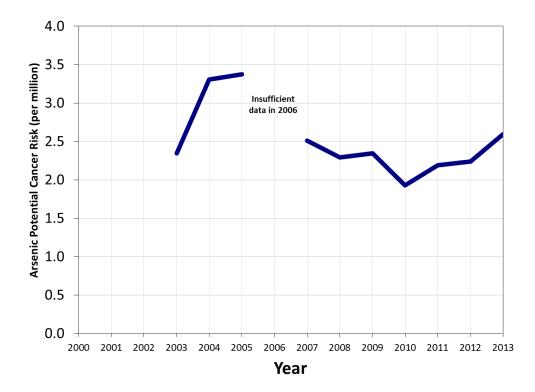


Figure 28: Arsenic Annual Average Potential Cancer Risk at Beacon Hill, 2003-2013

²³EPA Hazard Summary; <u>epa.gov/ttn/atw/hlthef/arsenic.html</u>.

Chloroform

The EPA lists chloroform as a probable human carcinogen. Chloroform inhalation is associated with central nervous system effects and liver damage.²⁴ Main sources of chloroform are water treatment plants and reservoirs. Since the Beacon Hill monitoring site is located at the Beacon Hill reservoir, the chloroform data may be biased high. However, it is still useful to calculate and assess the long-term trend and potential risk. Chloroform's 2013 average potential cancer risk range estimate at Beacon Hill was 3 in a million.

The Agency does not prioritize efforts to reduce chloroform emissions, as it does not likely present risk in areas other than those directly adjacent to reservoirs.²⁵ Since 2000, we found a statistically significant drop in risk from chloroform at a rate of about 0.3 per million per year.

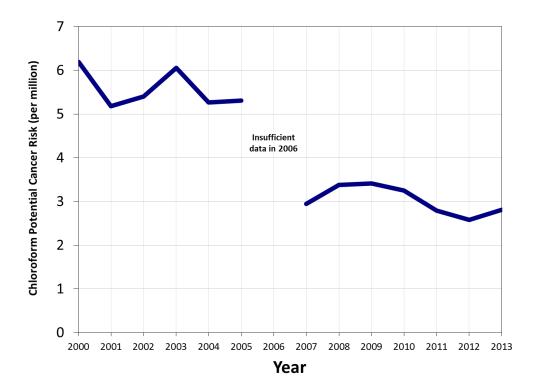


Figure 29: Chloroform Annual Average Potential Cancer Risk at Beacon Hill, 2000-2013

²⁵Seattle Public Utilities. 2011Water Quality Analysis shows detectable levels of trihalomethanes;

²⁴EPA Hazard Summary; <u>epa.gov/ttn/atw/hlthef/chlorofo.html</u>.

http://www.seattle.gov/util/groups/public/@spu/@water/documents/webcontent/02_016357.pdf. Trihalomethanes include chloroform, dichlorobromomethane, dibromochloromethane, and bromoform.

Hexavalent Chromium

Chromium is present in two chemical states (trivalent and hexavalent) in our air. Trivalent chromium occurs naturally, while hexavalent comes from human activities and is much more toxic. EPA lists hexavalent chromium as a known carcinogen, associated primarily with lung cancer. Hexavalent chromium is often abbreviated as chromium +6 or chromium VI.

Exposure to hexavalent chromium is also associated with adverse respiratory, liver, and kidney effects.²⁶ Sources of hexavalent chromium include chrome electroplaters, as well as combustion of distillate oil, and combustion of gasoline and diesel fuels (car, truck and bus exhaust).

In recent years, the monitoring method for total suspended particulate (TSP) hexavalent chromium has improved. The 2013 estimated average potential cancer risk range for hexavalent chromium at Beacon Hill was 3 in a million. Sampling has been discontinued for hexavalent chromium and the last sample was collected on June 30th, 2013. This estimate only includes the first half of 2013.

In some years, up to 20% of the samples were below method detection limits. For the trend below, we used the Kaplan-Meier method to estimate the mean to better account for potential left-sensored data biases for each year and changes in detection limits. Since 2000, we found a statistically significant drop in risk from hexavalent chromium at a rate of about 0.4 per million per year. The Agency's permitting program works with and regulates industrial chromium plating operations to reduce hexavalent chromium emissions.

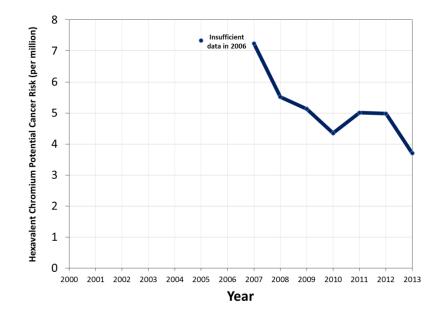
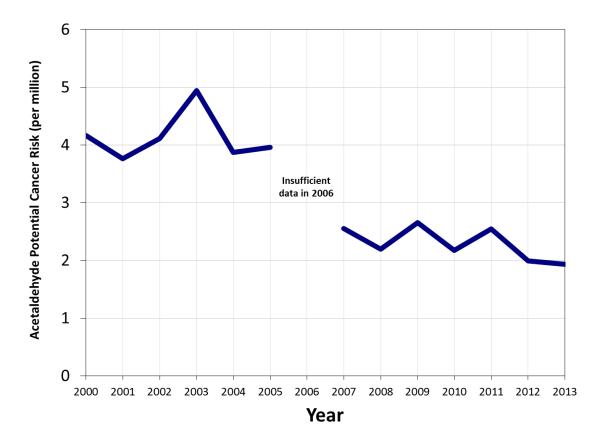


Figure 30: Hexavalent Annual Average Potential Cancer Risk at Beacon Hill, 2005-2013

²⁶EPA Hazard Summary; <u>epa.gov/ttn/atw/hlthef/chromium.html</u>.



Acetaldehyde

The EPA lists acetaldehyde as a probable human carcinogen. Acetaldehyde inhalation is also associated with irritation of eyes, throat and lungs, and effects similar to alcoholism.²⁷ Main sources of acetaldehyde include wood burning and car/truck exhaust. Acetaldehyde's 2013 average potential cancer risk estimate at Beacon Hill was 2 in a million.

Agency efforts that target vehicle exhaust and wood stove emission reductions also reduce acetaldehyde emissions. Since 2000, we found a statistically significant drop in risk from acetaldehyde at a rate of about 0.2 per million per year.

²⁷EPA Hazard Summary; <u>epa.gov/ttn/atw/hlthef/acetalde.html</u>.

Ethylene Dichloride

EPA lists ethylene dichloride as a probable human carcinogen. It is primarily used as a solvent in the production of other chemicals like vinyl chloride. It is also added to leaded gas.²⁸

We estimated ethylene dichoride's 2013 average potential cancer risk estimate at Beacon Hill at 2 in a million.

There is no useful trend information for this air toxic since this estimate includes samples near the practical quantitation limit of the measurement method. That is, all of the samples in 2013 were within twice the method detection limit. Additionally, in prior years, most of the samples were below the method detection limits. Through the years, the detection limits for this air toxic is near the one in a million potential cancer risk level.

The Agency's permitting program works with and regulates industrial producers of ethylene dichloride to reduce emissions.

²⁸ EPA Hazard Summary, <u>http://www.epa.gov/ttnatw01/hlthef/di-ethan.html</u>.

Naphthalene

EPA lists naphthalene as a possible human carcinogen. Naphthalene is similarly associated with respiratory effects and retina damage.²⁹ Local sources of naphthalene include combustion of wood and heavy fuels. Naphthalene's 2013 average potential cancer risk estimate at Beacon Hill was at one in a million.

The Agency works with and regulates wood burning through burn bans and wood stove replacement programs to reduce naphthalene emissions. We did not find a statistically significant trend in naphthalene levels over time. Monitoring for naphthalene and other polycyclic aromatic hydrocarbons started in 2008.

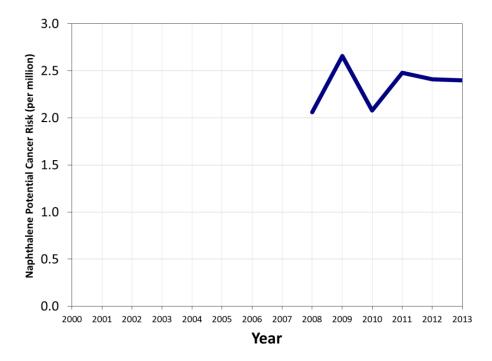


Figure 32: Naphthalene Annual Average Potential Cancer Risk at Beacon Hill, 2008-2013

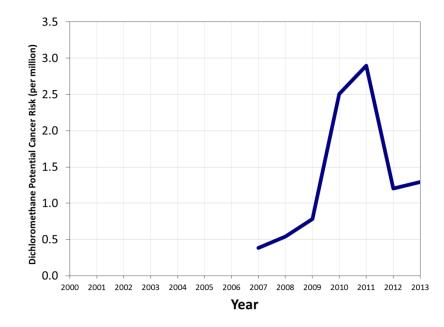
²⁹EPA Hazard Summary; <u>epa.gov/ttn/atw/hlthef/naphthal.html</u>.

Acrylonitrile

EPA lists acrylonitrile as a probable human carcinogen. Acrylonitrile is associated with headaches, fatigue, and nausea. The main source of acrylonitrile is from the production of plastics.³⁰

Acrylonitrile's 2013 average potential cancer risk estimate at Beacon Hill was at one in million. A sampled outlier on August 2, 2013 was included in this estimate and is the source for all the risk for the year. All the other samples in 2013 were below the detection limit and well below the potential cancer risk screen of one in a million. There is no useful trend information for this air toxic since all the prior years had samples below detection. Through the years, the detection limits for this air toxic has been near or below the one in a million potential cancer risk level. On August 2, 2013, no other volatile organic compounds were statistical outliers when compared to their annual variability.

The Agency's permitting program works with and regulates industrial producers of acrylonitrile to reduce emissions.

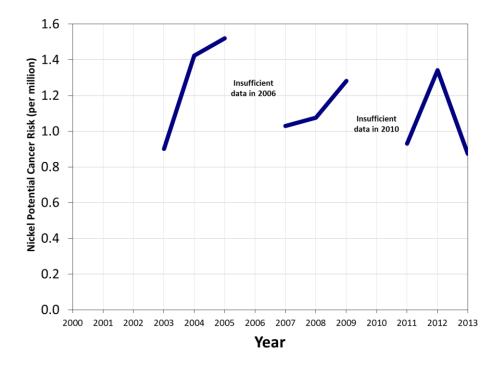

³⁰ EPA Hazard Summary, <u>http://www.epa.gov/ttnatw01/hlthef/acryloni.html</u>.

Dichloromethane

EPA lists dichloromethane as a probable human carcinogen. Dichloromethane is also known as methylene chloride. Dichloromethane is a common solvent used for paint, extraction, and cleaning processes.³¹ Dichloromethane's 2013 average potential cancer risk estimate at Beacon Hill was one in a million. We did not find a statistically significant trend in dichloromethane levels over this time frame.

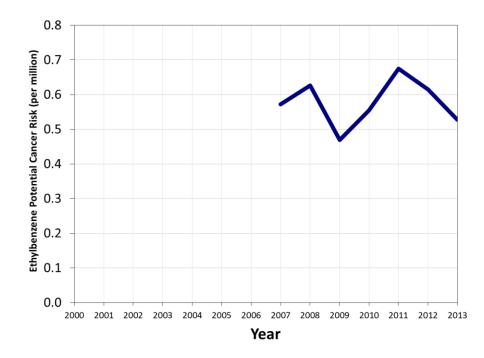
The Agency's permitting program works with and regulates industrial producers of dichloromethane to reduce emissions. We do not have a program that addresses emissions from household products like paint strippers that may contain dichloromethane.

Figure 33: Dichloromethane Annual Average Potential Cancer Risk at Beacon Hill, 2007-2013


³¹ EPA Hazard Summary, <u>http://www.epa.gov/ttnatw01/hlthef/methylen.html</u>.

Nickel

EPA lists nickel as a known human carcinogen. Nickel is also associated with dermatitis and respiratory effects.³² Combustion of gasoline and diesel fuels (car, truck and bus exhaust) is a main source of nickel in the Puget Sound area. Nickel's 2013 average potential cancer risk estimate at Beacon Hill was one in a million. We did not find a statistically significant trend in nickel levels over this time frame. Agency efforts that target reducing vehicle exhaust also reduce nickel emissions.



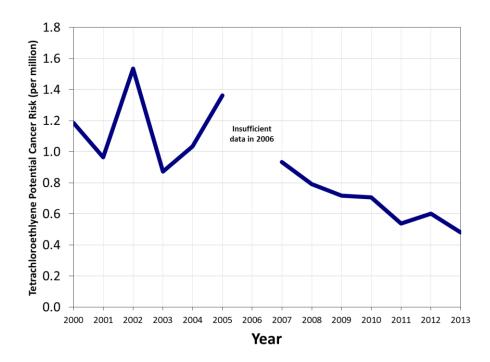
³²EPA Hazard Summary; <u>epa.gov/iris/subst/0273.htm</u>.

Ethylbenzene

EPA lists ethylbenzene as a Group D pollutant, which is not classifiable as to human carcinogenicity due to limited information available.³³ Chronic exposure to ethylbenzene may affect the blood, liver, and kidneys. Local sources of ethylbenzene are from fuels, asphalt and naphtha. It is also used in styrene production. Ethylbenzene's 2013 average potential cancer risk estimate at Beacon Hill was below one in a million, however is above one in the 95th percentile table in the appendix. We did not find a statistically significant trend in ethylbenzene levels over this time frame. The Agency works with and regulates solvent-using businesses to reduce ethylbenzene emissions.

Figure 35: Ethylbenzene Annual Average Potential Cancer Risk at Beacon Hill, 2007-2013

³³EPA Hazard Summary: <u>epa.gov/ttn/atw/hlthef/ethylben.html</u>.



Tetrachloroethylene

EPA lists tetrachloroethylene, also known as perchloroethylene or "perc", as a probable human carcinogen. Tetrachloroethylene inhalation is also associated with central nervous system effects, liver and kidney damage, and cardiac arrhythmia.³⁴ Dry cleaners are the main source of tetrachloroethylene. Tetrachloroethylene's 2013 average potential cancer risk estimate at Beacon Hill was below one in a million, however is above one in the 95th percentile table in the appendix.

Recently, we've been working with dry cleaners to monitor for and repair leaks in their equipment to reduce the release of tetrachloroethylene. Since 2000, we found a statistically significant drop in risk from tetrachloroethylene at a rate of about 0.1 per million per year.

Figure 36: Tetrachloroethylene Annual Average Potential Cancer Risk at Beacon Hill, 2000-2013

³⁴EPA Hazard Summary; <u>epa.gov/ttn/atw/hlthef/tet-ethy.html</u>.

Definitions

General Definitions

Air Quality Index

	Breakpoints for Criteria Pollutants													
0₃ (ppm) 8-hour	0₃ (ppm) 1-hour ^(a)	PM _{2.5} (μg/m ³) 24 hour	PM ₁₀ (μg/m ³) 24 hour	CO (ppm) 8 hour	SO ₂ ^(c) (ppb) 1 hour	NO ₂ (ppb) 1 hour	AQI value	Category						
0.000-0.059	_	0.0–12.0	0–54	0.0-4.4	0–35	0–53	0–50	Good						
0.060-0.075	_	12.1–35.4	55–154	4.5–9.4	36–75	54–100	51-100	Moderate						
0.076–0.095	0.125– 0.164	35.5–55.4	155–254	9.5–12.4	76–185	101–360	101–150	Unhealthy for sensitive groups						
0.096–0.115	0.165– 0.204	55.5–150.4	255–354	12.5–15.4	186–304	361–649	151–200	Unhealthy						
0.116–0.374	0.205– 0.404	150.5–250.4	355–424	15.5–30.4	305–604	650–1249	201–300	Very unhealthy						
(b)	0.405– 0.504	250.5-350.4	425–504	30.5–40.4	604–804	1250– 1649	301–400							
(b)	0.505- 350.4-500. 0.604		505–604	40.5–50.4	805–1004	1650– 2049	401–500	Hazardous						

Table 4: 2013 Calculation and Breakpoints for the Air Quality Index (AQI)

^(a)Areas are generally required to report the AQI based on 8-hour ozone values. However, there are a small number of areas where an AQI based on 1-hour ozone values would be safer. In these cases, in addition to calculating the 8-hour ozone value, the 1-hour ozone value may be calculated, and the greater of the two values reported.

^(b)8-hour O₃ values do not define higher AQI values (above 300). AQI values above 300 are calculated with 1-hour O₃ concentrations. ^(c)EPA changed the SO₂ standard on June 22, 2010 to be based on an hourly maximum instead of a 24-hour and annual average.

For more information on the AQI, see <u>airnow.gov/index.cfm?action=aqibasics.aqi</u>.

Air shed

A geographic area that shares the same air, due to topography, meteorology and climate.

Air Toxics

Air toxics are broadly defined as over 400 pollutants that the Agency considers potentially harmful to human health and the environment. These pollutants are listed in the Washington Administrative Code at apps.leg.wa.gov/WAC/default.aspx?cite=173-460-150. Hazardous air pollutants (see below) are checked on this list to identify them as a subset of air toxics. Air toxics are also called Toxic Air Contaminants (TAC) under Agency Regulation III.

Criteria Air Pollutant (CAP)

The Clean Air Act of 1970 defined *criteria pollutants* and provided EPA the authority to establish ambient concentration standards for these criteria pollutants to protect public health. EPA periodically revises the original concentration limits and methods of measurement, most recently in 2011. The six criteria air pollutants are: particulate matter (10 micrometers and 2.5

micrometers), ozone, nitrogen dioxide, carbon monoxide, sulfur dioxide and lead. See appendix page A-29 for more information.

ppm, ppb (parts per million, or parts per billion))

A unit of concentration used for a many air pollutants. A ppm (ppb) means one molecule of the pollutant per million (or billion) molecules of air.

Hazardous Air Pollutant (HAP)

A *hazardous air pollutant* is an air contaminant listed in the Federal Clean Air Act, Section 112(b). EPA currently lists 188 pollutants as HAPs at <u>epa.gov/ttn/atw/188polls.html</u>.

Temperature Inversions

Air temperature usually decreases with altitude. On a sunny day, air near the surface is warmed and is free to rise. The warm surface air can rise to altitudes of 4000 feet or more and is dispersed (or mixed) into higher altitudes. In contrast, on clear nights with little wind, the surface can cool rapidly (by 10 degrees or more), which also cools the air just above the surface. The air aloft does not cool, which creates a very stable situation where the warm air aloft effectively caps the cooler air below. This limits mixing to just a few hundred feet or less. This situation is called a temperature inversion and allows for pollutants to accumulate to high concentrations.

Unit Risk Factor (URF)

A unit risk factor is a measure of a pollutant's cancer risk based on a 70-year inhalation exposure period. The units are risk/concentration. Unit risk factors are multiplied by concentrations to estimate potential cancer risk.

Visibility/Regional Haze

Visibility is often explained in terms of visual range and light extinction. *Visual range* is the maximum distance (usually miles or kilometers) a black object can be seen against the horizon. *Light extinction* is the sum of light scattering and light absorption by fine particles and gases in the atmosphere. The more light extinction, the shorter the visual range. Reduced visibility (or visual range) is caused by weather (clouds, fog, and rain) and air pollution (fine particles and gases).

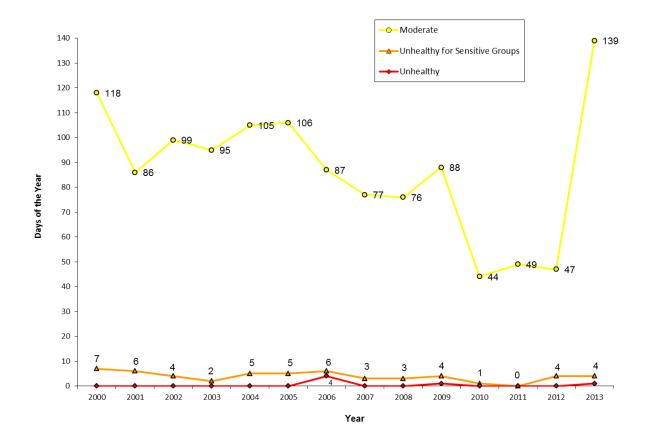
Volatile Organic Compound (VOC)

An organic compound that participates in atmospheric photochemical reactions. This excludes compounds determined by EPA to have negligible photochemical reactivity.

1904 Third Avenue, Suite 105 Seattle, Washington 98101 www.pscleanair.org

2013

Air Quality Data Summary Appendix

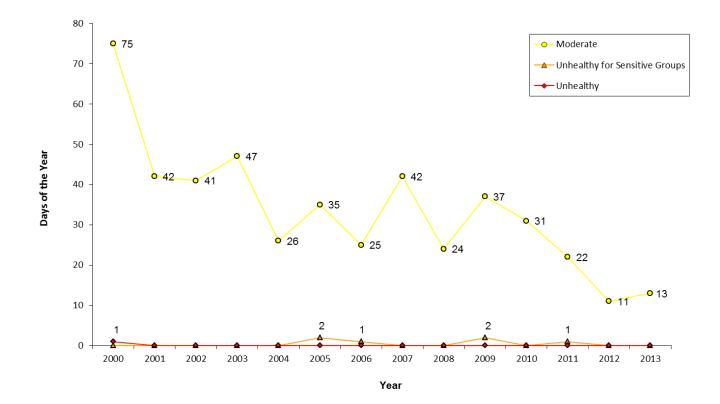

August 2014

Working Together for Clean Air

Air Quality Index 1980 – 2013

							King	g Cou	inty						•				
	Days ir	n Each Ai	r Quality	Category			Poll	utan	t Det	ermi	ning t	the A	QI		Hig	hest Va	lue		
			Unhealthy																
		f	or Sensitive	e	Very		Al	l Days				Unhea	lthy Da	thy Days					
Year	Good	Moderate	Groups	Unhealthy	Unhealthy	PM	CO	SO_2	O ₃	NO_2	PM	CO	O ₃	NO_2	AQI	Date	Pollutant		
1980	73	275		18	0	95	270	1			1	17			194	Jan 23	PM		
1981	69	267		28	1	109	254	2			5	24			213	Jan 15	CO		
1982	86	268		10	1	96	264	5			1	10			214	Feb 6	PM		
1983	98	258		9	0	101	261	3			0	9			183	Jan 28	CO		
1984	146	218		2	0	111	242	13			2	0			103	Dec 6	PM		
1985	150	202		10	3	156	206	3			6	7			204	Dec 12	PM		
1986	130	226		8	1	113	246	6			1	8			206	Jan 7	PM		
1987	120	238		7	0	119	246	0			3	4			184	Feb 6	PM		
1988	215	146		5	0	67	298	1			2	3			150	Dec 3	CO		
1989	231	134		0	0	129	233	3			0	0			100	Jan 19 #			
1990	216	145		4	0	139	201	6	19		0	0	4		131	Aug 11	O ₃		
1991	229	136		0	0	140	190	8	27		0	0	0		100	Dec 15 #			
1992	206	159		1	0	103	230	1	32		0	1	0		167	Feb 3	CO		
1993	240	125		0	0	118	235	1	11		0	0	0		88	Jan 11	PM		
1994	293	70		2	0	72	270	1	22		0	0	2		134	Jul 21	O ₃		
1995	299	66		0	0	95	249	5	16		0	0	0		89	Jan 3	CO		
1996	297	69		0	0	85	252	2	27		0	0	0		100	Oct 9	CO		
1997	302	63		0	0	117	230	0	18		0	0	0		94	Jan 16	PM		
1998	317	46		2	0	111	228	0	26		0	0	2		114	Jul 27 #	O ₃		
1999	267	92	6	0	0	251	60	0	54		5	0	1		134	Jan 4	PM		
2000	241	118	7	0	0	288	25	0	53		5	0	2		114	Nov 21	PM		
2001	273	86	6	0	0	295	10	0	60		6	0	0		118	Nov 10	PM		
2002	262	99	4	0	0	275	11	0	79		4	0	0		113	Nov 27	PM		
2003	268	95	2	0	0	250	5	0	110		0	0	2		132	Jun 6	O ₃		
2004	256	105	5	0	0	280	2	0	84		4	0	1		132	Dec 18	PM		
2005	254	106	5	0	0	302	3	0	60		5	0	0		117	Dec 11	PM		
2006	268	87	6	4	0	273	2	0	90		6	0	4		169	Jul 22	O ₃		
2007	285	77	3	0	0	278	0		87		2	0	1		115	Jan 29	PM		
2008	287	76	3	0	0	306	0		60		0	0	3		140	Jun 29	O ₃		
2009	272	88	4	1	0	254	0		111		1	0	4		154	Jul 5	PM		
2010	320	44	1	0	0	261	0		104		0	0	1		104	Aug 17	O ₃		
2011	316	49	0	0	0	192	0		173		0	0	0		98	Dec 10	PM		
2012	315	47	4	0	0	206	0		160		2	0	2		116	Aug 5	O ₃		
2013	221	139	4	1	0	308	0		53	4	5	0	0	0	152	Nov 28	PM		
Totals	7822	4419	60	112	6	6095	4723	61	1536	4	66	83	29	0					
PM = Particulate Matter CO = Carbon Monoxide						SO ₂ = S	ulfur D	ioxide		0 ₃ = 0z	zone	# = 1	st Occu	rrence	NO ₂ = Nitro	gen Dioxi	de		

Note: In 1987 the particulate matter (PM) standard, total suspended particulates (TSP), was replaced by only that fraction of particulate matter with particle diameters equal to or less than 10 micrometers (PM₁₀).
 In 1999 the Pollutant Standard Index (PSI) was replaced by the Air Quality Index (AQI) and included new and more stringent fine particle (PM_{2.5}) and 8-hour ozone (O₃) standards. The O₃ standard was again revised in March 2008. NO₂ data added beginning 2013

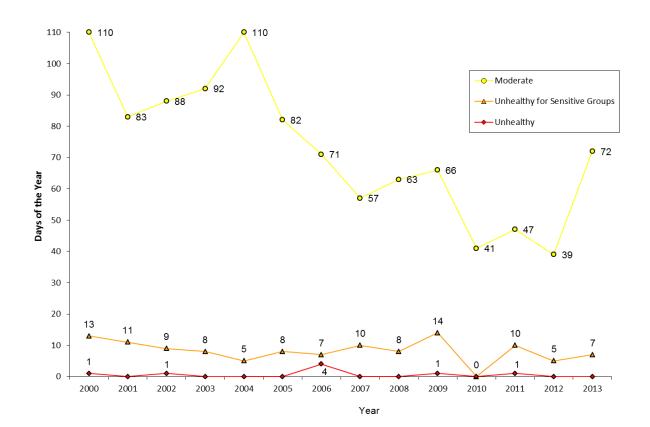


Air Quality for King County

Air Quality Index 1990 – 2013

	Kitsap County															
	Days i	n Each Ai	r Quality	Category		Pol	lutan	t Det	ermi	ning t	he A	QI	Highest Value			
			Unhealthy	,												
		f	or Sensitiv	e	Very		All D	a ys		Unhea	althy D	a ys				
Year	Good	Moderate	Groups	Unhealthy	Unhealthy	PM	CO	SO_2	O ₃	PM	CO	O ₃	AQI	Date	Pollutant	
1990																
1991																
1992	353	8		0	0	361				0			68	Nov 25	PM	
1993	343	12		0	0	355				0			62	Jan 11	PM	
1994	364	1		0	0	248	117			0	0		54	Dec 23	CO	
1995	361	4		0	0	86	279			0	0		57	Jan 5	CO	
1996	361	1		0	0	206	156			0	0		51	Mar 2	PM	
1997	361	1		0	0	362				0			55	Jan 15	PM	
1998	347	9		0	0	356				0			87	Nov 8	PM	
1999	333	32	0	0	0	365				0			81	Jan 5#	PM	
2000	290	75	0	1	0	366				1			159	Jul 4	PM	
2001	320	42	0	0	0	362				0			91	Dec 25	PM	
2002	324	41	0	0	0	365				0			78	Nov 2	PM	
2003	318	47	0	0	0	365				0			78	Nov 3	PM	
2004	340	26	0	0	0	366				0			80	Jul 4	PM	
2005	328	35	2	0	0	365				2			136	Jul 4	PM	
2006	339	25	1	0	0	365				1			105	Dec 17	PM	
2007	322	42	0	0	0	364				0			92	Nov 24	PM	
2008	342	24	0	0	0	366				0			78	Dec 23	PM	
2009	300	37	2	0	0	339				2			111	Dec 3	PM	
2010	321	31	0	0	0	352				0			88	Dec 31	PM	
2011	340	22	1	0	0	363				1			111	Jan 1	PM	
2012	345	11	0	0	0	356				0			68	Jan 1	PM	
2013	352	13	0	0	0	365				0			75	Jul 4	PM	
Totals	7404	539	6	1	0	7398	552	0	0	7	0	0				
	PM = P	articulate M	latter	CO = Carbo	n Monoxide		SO ₂ = S	ulfur D	Dioxid	e (O ₃ = Oz	one	# = 1st	Occurrent	ce	

Note: In 1987 the particulate matter (PM) standard, total suspended particulates (TSP), was replaced by only that fraction of particulate matter with particle diameters equal to or less than 10 micrometers (PM₁₀).
 In 1999 the Pollutant Standard Index (PSI) was replaced by the Air Quality Index (AQI) and included new and more stringent fine particle (PM_{2.5}) and 8-hour ozone (O₃) standards. The O₃ standard was again revised in March 2008.



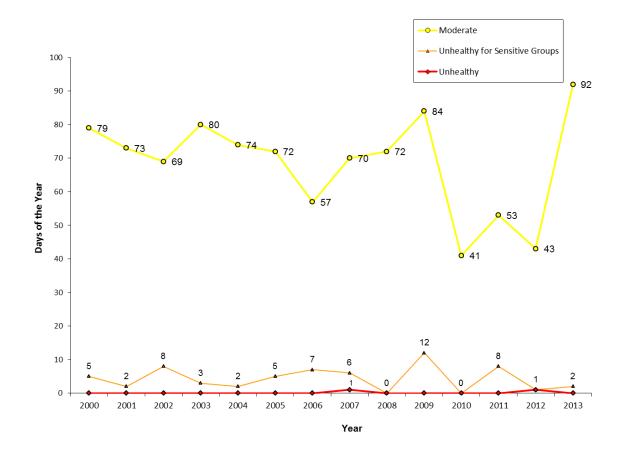
Air Quality for Kitsap County

Air Quality Index 1980 – 2013

					Pie	rce (Coun	ty							
	Days i	n Each Ai	r Quality	Category	y	Pol	lutan	t De	termi	ning t	the A	QI	н	ighest V	alue
			Unhealthy						1						
		f	or Sensitiv		Very		All D				althy[
Year	Good	Moderate	Groups	Unhealthy	/ Unhealthy	PM	CO	SO_2	O ₃	PM	CO	O ₃	AQI	Date	Pollutan
1980	83	271		12	0	256	107	3		4	8		160	Apr 12	PM
1981	74	278		10	3	222	137	6		1	12		227	Jan 12	CO
1982	119	242		4	0	255	101	9		0	4		167	Dec 30	CO
1983	140	222		3	0	228	128	9		1	2		137	Dec 23	PM
1984	162	198		6	0	207	149	10		0	6		117	Jan 19 #	CO
1985	140	213		12	0	252	109	4		1	11		165	Dec 13	PM
1986	161	197		7	0	247	114	4		2	5		167	Oct 23	CO
1987	173	177		13	2	227	136	2		5	10		220	Feb 5	CO
1988	226	132		8	0	184	175	7		3	5		183	Jan 27	CO
1989	260	103		2	0	217	121	27		0	2		117	Nov 30 #	CO
1990	271	91		3	0	219	87	41	18	1	0	2	118	May 5	PM
1991	261	103		1	0	247	85	12	21	0	1	0	117	Jan 31	CO
1992	260	106		0	0	231	83	27	25	0	0	0	100	Feb 3 #	CO
1993	289	76		0	0	247	82	23	13	0	0	0	89	Feb 1	CO
1994	313	51		1	0	235	75	31	24	0	0	1	105	Jul 21	O ₃
1995	307	58		0	0	239	97	13	16	0	0	0	83	Jan 3	PM
1996	322	44		0	0	206	119	23	18	0	0	0	78	Oct 9	CO
1997	316	49		0	0	262	75	16	12	0	0	0	84	Jan 16	PM
1998	338	25		2	0	213	112	25	15	0	0	2	120	Jul 27	O ₃
1999	265	97	3	0	0	318	1	1	45	3	0	0	139	Jan 4	PM
2000	242	110	13	1	0	318	2		46	14	0	0	153	Dec 6	PM
2001	271	83	11	0	0	306	2		57	11	0	0	139	Nov 10	PM
2002	267	88	9	1	0	291	1		73	10	0	0	158	Nov 27	PM
2003	265	92	8	0	0	264	1		100	8	0	0	122	Jan 7	PM
2004	251	110	5	0	0	272	0		94	5	0	0	133	Nov 5	PM
2005	275	82	8	0	0	276	2		87	8	0	0	120	Dec 10	PM
2006	283	71	7	4	0	270	0		95	8	0	3	170	Dec 17	PM
2007	298	57	10	0	0	261			104	9	0	1	137	Jan 29	PM
2008	295	63	8	0	0	259			107	5	0	3	129	Aug 16	O ₃
2009	284	66	14	1	0	250			115	15	0	0	158	Jul 5	PM
2010	324	41	0	0	0	259			106	0	0	0	83	Dec 5	PM
2010	307	47	10	1	0	365			0	11	0	0	152	Jan 1	PM
2011	322	39	5	0	0	366			0	5	0	0	144	Jan 20	PM
2012	286	72	7	0	0	365			0	7	0	0	116	Jan 13	PM
Totals	8450	3754	118	92	5	8834	2101	293	1191	137	66	12			
	PM = Pa	articulate M		SO ₂ = S	ulfur	Dioxid	e	O ₃ = Oz	one	# = 1st	Occurrenc	e			

Note: In 1987 the particulate matter (PM) standard, total suspended particulates (TSP), was replaced by only that fraction of particulate matter with particle diameters equal to or less than 10 micrometers (PM₁₀). In 1999 the Pollutant Standard Index (PSI) was replaced by the Air Quality Index (AQI) and included new and more stringent fine particle (PM_{2.5}) and 8-hour ozone (O₃) standards. The O₃ standard was again revised in March 2008.

Air Quality for Pierce County


Air Quality Index 1980 - 2013

					Snoho	omis	h Co	unty							
	Days i	n Each A	ir Quality	Category	/	Pol	lutan	t Det	ermi	ining	the A	QI	н	ighest V	alue
			Unhealthy			I I			1	I .		1			
			for Sensitiv		Very		All D		-		althyD			_	
Year		Moderate	Groups		Unhealthy		CO	SO ₂	O ₃	PM	CO	SO ₂	AQI	Date	Pollutant
1980	340	19		0	0	356		3		0		0	60	Jan 23	PM
1981	350	11		0	0	340		21		0		0	62	Jan 16	PM
1982	334	30		1	0	277	70	18		0	1	0	117	Dec 30	CO
1983	308	56		1	0	191	150	24		0	1	0	117	Nov 30	CO
1984	309	57		0	0	105	217	44		0	0	0	92	Sep 28	PM
1985	300	64		1	0	152	166	47		0	1	0	117	Dec 11	CO
1986	324	41		0	0	169	148	48		0	0	0	89	Jan 25	CO
1987	203	158		3	0	96	250	18		0	3	0	117	Jun 26 #	CO
1988	174	184		8	0	15	345	6		0	8	0	133	Sep 13 #	CO
1989	150	213		2	0	26	338	1		0	2	0	133	Feb 10	CO
1990	166	197		2	0	29	335	1		0	2	0	117	Mar 2 #	CO
1991	188	176		1	0	32	333	0		0	1	0 0	117	Dec 16	CO
1992	180	186		0	0	34	332	0		0	0	-	100	Feb 4 #	CO
1993	237	128		0	0	56	306	0	3 2	0	0	0	79	Jan 11	PM
1994	294	71		0	0	28	334	1		0	0	0	78	Dec 30	CO
1995	316	49		0	0	59	294	1	11	0	0	0 0	78	Jul 7	со
1996	340	26		0	0	54	299	0	13	0	0	-	67	Jul 26	O ₃
1997	348	17		0	0	210	151	0	4	0	0	0	67	Jan 14	PM
1998	353	11		1	0	143	219	3		1	0	0	153	Dec 22	PM
1999	300	62	3	0	0	260	105	0		3	0	0	129	Jan 3	PM
2000	253	79	5	0	0	301	36			5	0	0	113	Jul 4	PM
2001	290	73	2	0	0	356	9			2	0	0	111	Nov 10	PM
2002	288	69	8	0	0	343	22			8	0	0	116	Nov 4	PM
2003	282	80	3	0	0	364	1			3	0	0	108	Nov 4	PM
2004	290	74	2	0	0	364	2			2	0	0	107	Nov 5	PM
2005	288	72	5	0	0	360	5			5	0	0	139	Dec 11	PM
2006	301	57	7	0	0	364	1			7	0	0	143	Dec 17	PM
2007	288	70	6	1	0	365				7	0	0	155	Jan 15	PM
2008	294	72	0	0	0	366				0	0	0	96	Dec 19	PM
2009	269	84	12	0	0	365				12	0	0	117	Jul 5	PM
2010	324	41	0	0	0	365				0	0	0	98	Nov 24	PM
2011	304	53	8	0	0	365				8	0	0	147 150	Jan 1	PM
2012	321	43	1	1	0	366				2	0	0	156	Jul 4	PM
2013	271	92	2	0	0	365				2	0	0	115	Nov 24	PM
Totals	9577	2715	64	22	0	7641	4468	236	33	67	19	0			
PM = Particulate Matter CO = Carbon Monoxide								ulfur D	Dioxid	e	0 ₃ = Oz	one	#	‡ = 1st Occ	urrence

Note: In 1987 the particulate matter (PM) standard, total suspended particulates (TSP), was replaced by only that fraction of particulate matter with particle diameters equal to or less than 10 micrometers (PM₁₀).

In 1999 the Pollutant Standard Index (PSI) was replaced by the Air Quality Index (AQI) and included new and more stringent fine particle ($PM_{2.5}$) and 8-hour ozone (O_3) standards. The O_3 standard was again revised in March 2008.

Air Quality for Snohomish County

Monitoring Methods Used from 1999 to 2013 in the Puget Sound Air shed

Pollutant Code	Measurement	Method	Units
Вар	Light Absorption by Particles	Light Absorption by Aethalometer	bap (x 10 exp-4)/m
Bsp	Light Scattering by Particles	Nephelometer - Heated Inlet	bsp (x 10 exp-4)/m
CO	Carbon Monoxide	Gas Nondispersive Infrared Radiation	parts per million
NO _x	Nitrogen Oxides (NO _x)	Chemiluminescence	parts per million
	Nitric Oxide (NO)	Chemiluminescence	parts per million
	Nitrogen Dioxide (NO ₂)	Chemiluminescence	parts per million
NO _Y	Reactive Nitrogen Compounds (NO _x + other reactive compounds)	Chemiluminescence	parts per billion
O ₃	Ozone	UV Absorption	parts per million
Pb	Lead	Standard High Volume	micrograms per standard cubic meter
PM_{10} ref	PM ₁₀ Reference	Reference - Hi Vol Andersen/GMW 1200	micrograms per cubic meter
PM ₁₀ bam	PM ₁₀ Beta Attenuation	Andersen FH621-N	micrograms per cubic meter
PM ₁₀ teom	PM ₁₀ Teom	R&P Mass Transducer	micrograms per cubic meter
PM _{2.5} ref	PM _{2.5} Reference	Reference—R&P Partisol 2025	micrograms per cubic meter
PM _{2.5} bam	PM _{2.5} Beta Attenuation	Andersen FH621-N	micrograms per cubic meter
PM _{2.5} teom	PM _{2.5} Teom	R&P Mass Transducer	micrograms per cubic meter
PM _{2.5} ls	PM _{2.5} Nephelometer	Radiance Research M903 Nephelometer	micrograms per cubic meter
PM _{2.5} bc	PM _{2.5} Black Carbon	Light Absorption by Aethalometer	micrograms per cubic meter
RH	Relative Humidity	Continuous Instrument Output	percent
SO ₂	Sulfur Dioxide	UV Fluorescence	parts per million
Temp	Temperature	Continuous Instrument Output	degrees F
TSP	PM Total Hi-Vol	Standard High Volume	micrograms per standard cubic meter
Vsby	Visual Range	Light Scattering by Nephelometer	miles
Wind	Wind Speed/ Wind Direction	RM Young 05305 Wind Monitor AQ (old method)	miles per hour/degrees
	Wind Speed/ Wind Direction	Ultrasonic (new method)	miles per hour/degrees

Historical Air Quality Monitoring Network

Station ID	Location	PM ₁₀ Ref	PM ₁₀ bam	PM ₁₀ Teom	PM _{2.5} ref	PM _{2.5} bam	PM _{2.5} teom	PM _{2.5} Is	PM _{2.5} bc	03	SO2	NO _Y	со	b _{sp}	Wind	Temp	AT	Vsby	Location
AO®	Northgate, 310 NE Northgate Way, Seattle (ended Mar 31, 2003)												х						b, d, f
AQ	Queen Anne Hill, 400 W Garfield St, Seattle (photo/visibility included)							•						•	•	•		•	a, d, f
AR®	4th Ave & Pike St, 1424 4 th Ave, Seattle (ended Jun 30, 2006)												х						a, d
AS	5th Ave & James St, Seattle (ended Feb 28, 2001)												х						a, d
AU®	622 Bellevue Way NE, Bellevue (ended Jul 30, 1999)												х						a, d
AZ	Olive Way & Boren Ave, 1624 Boren Ave, Seattle							•	х					•	•	•		•	a, d
BF●	University District, 1307 NE 45th St, Seattle (ended Jun 30, 2006)												х						b, d
BU⊚	Highway 410, 2 miles E of Enumclaw (ended Sep 30, 2000)									х									с, е
BV	Sand Point, 7600 Sand Pt Way NE, Seattle (ended Aug 31, 2006)							х						х	х	х			b, d
BW◉/ BZ◉	Beacon Hill, 15th S & Charlestown, Seattle SPECIATION SITE				•		•	х	х	•	•	•	•	х	•	•	•	•	b, d, f
CE	Duwamish, 4752 E Marginal Way S, Seattle SPECIATION SITE	х		х	х		•	•	•		х			х	•	•		•	a, e
CG●	Woodinville, 17401 133 rd Av NE, Woodinville							•						•					b ,d ,f
CW	James St & Central Ave, Kent	х		х	х		•	•						•	•	•		•	b, d
СХ	17711 Ballinger Way NE, Lake Forest Park (ended Jun 4, 1999)	х	х											х	х			x	b, d, f
CZ	Aquatic Center, 601 143 rd Ave NE, Bellevue (ended May 31, 2006)						х	х						х				х	b, f
DA	South Park, 8025 10 th Ave S, Seattle (ended Dec 31, 2002)	х			х			х						х	х			х	b, e, f

Station ID	Location	PM ₁₀ Ref	PM ₁₀ bam	PM ₁₀ Teom	PM _{2.5} ref	PM _{2.5} bam	PM _{2.5} teom	PM _{2.5} Is	PM _{2.5} bc	O ₃	SO2	ΝΟγ	со	\mathbf{b}_{sp}	Wind	Temp	AT	Vsby	Location
DB	17171 Bothell Way NE, Lake Forest Park	х	х		х		х	•	х					•	•	•		•	b, d, f
DC	305 Bellevue Way NE, Bellevue				х			•						•				•	a, d
DD	South Park, 8201 10 th Ave S, Seattle							•						•				•	b, e, f
DE®	City Hall, 15670 NE 85 th St, Redmond (ended Dec 14, 2005)				х			х						х				х	a, d
DF®	30525 SE Mud Mountain Road, Enumclaw				х			х		•				х	•	•		х	с
DG©	42404 SE North Bend Way, North Bend				х		х	•		•				•	•	•		•	c, d, f
DH©	2421 148 th Ave NE, Bellevue												•						b, d
DK⊚	43407 212 th Ave SE, 2 mi west of Enumclaw (ended Sep 6, 2006)														х	х			C
DL⊛	NE 8th St & 108th Ave NE, Bellevue (ended March 4, 2003)												х						a, d
DN©	20050 SE 56 th , Lake Sammamish State Park, Issaquah									•					x	х			b, d
DP®	504 Bellevue Way NE, Bellevue (ended Sep 30, 1999)	х			х														a, d
DZ⊚	Georgetown, 6431 Corson Ave S, Seattle (ended August 31, 2002)											х	х		х				a, d, e, f
EA	Fire Station #12, 2316 E 11 th St, Tacoma (ended Dec 31, 2000)	х	х												х				a, e
EP	27th St NE & 54th Ave NE, Tacoma (ended Feb 29, 2000)	х									х				х				b, e, f
EQ	Tacoma Tideflats, 2301 Alexander Ave, Tacoma SPECIATION SITE	х	х	х	х		х	•	•		х			•	•	•		•	a, e
ER	South Hill, 9616 128 th St E, Puyallup	х	х		х	х		•	•					•	•	•		•	b, f
ES	7802 South L St, Tacoma SPECIATION SITE				•		•	•	•					•	•	•		•	b, f
FF®	Tacoma Indian Hill, 5225 Tower Drive NE, northeast Tacoma														•	•			b, f

Station ID	Location	PM ₁₀ Ref	PM ₁₀ bam	PM ₁₀ Teom	PM _{2.5} ref	PM _{2.5} bam	PM _{2.5} teom	PM _{2.5} Is	PM _{2.5} bc	O 3	SO2	ΝΟγ	со	b _{sp}	Wind	Temp	AT	Vsby	Location
FG®	Mt Rainier National Park, Jackson Visitor Center									•									С
FH®	Charles L Pack Forest, La Grande									•									c, f
FLO	1101 Pacific Ave, Tacoma (ended Jun 30, 2006)												х						a, d
ID	Hoyt Ave & 26th St, Everett (ended Feb 29, 2000)										x				х				a, e, d
IG	Marysville JHS, 1605 7 th St, Marysville SPECIATION SITE	х	х		•		•	•	•					•	•	•		•	b, d
ІН	20935 59 th Place West, Lynnwood (ended Jun 8, 1999)	х		х										х	х			х	a, d
Ш	6120 212 th St SW, Lynnwood				х	х	•	•						•	•	•		•	b, d
JN©	5810 196 th Street, Lynwood (ended Jun 30, 2006)												х						a,d
JO	Darrington High School, Darrington 1085 Fir St				•		•	•	•					•	•	•		•	d, f
JPO	2939 Broadway Ave, Everett (ended March 31, 2003)												х						a, d
JQ⊚	44th Ave W & 196 th St SW, Lynnwood (ended May 3, 2004)												х						a, d
JS®	Broadway & Hewitt Ave, Everett (ended May 21, 2000)												х						a, d
QE	Meadowdale, 7252 Blackbird Dr NE, Bremerton	х				х	•	•						•	•	•		•	b, f
QF	Lions Park, 6th Ave NE & Fjord Dr, Poulsbo (ended Feb 29, 2000)														х				b, f
QG	Fire Station #51, 10955 Silverdale Way, Silverdale (ended September 4, 2008)					х		х						х	х	х		х	a, d
RV●	Yelm N Pacific Road, 931 Northern Pacific Rd SE, Yelm									•									c,f
UB●	71 E Campus Dr, Belfair (ended Sep 30, 2004)									х									с
VK℗	Fire Station, 709 Mill Road SE, Yelm (ended Oct 2005)									х									c,f

۲	Station operated by Ecology	SO ₂	Sulfur Dioxide
RV●	Shading indicates station functioning	NOy	Nitrogen Oxides
•	Indicates parameter currently monitored	СО	Carbon Monoxide
х	Indicates parameter previously monitored	b_{sp}	Light scattering by atmospheric particles (nephelometer)
PM ₁₀ ref	Particulate matter <10 micrometers (reference)	Wind	Wind direction and speed
PM ₁₀ bam	Particulate matter <10 micrometers (beta attenuation continuous)	Temp	Air temperature (relative humidity also measured at BW, IG, ES)
PM ₁₀ teom	Particulate matter <10 micrometers (teom continuous)	AT	Air Toxics
PM _{2.5} ref	Particulate matter <2.5 micrometers (reference)	VSBY	Visual range (light scattering by atmospheric particles)
PM _{2.5} bam	Particulate matter <2.5 micrometers (beta attenuation continuous)	рното	Visibility (camera)
PM _{2.5} teom	Particulate matter <2.5 micrometers (teom-fdms continuous)	O ₃	Ozone (May through September)
PM _{2.5} ls	Particulate matter <2.5 micrometers (light scattering nephelometer continuous)		
PM _{2.5} bc	Particulate matter <2.5 micrometers black carbon (light absorption aethalometer)		
Location			
а	Urban Center		
b	Suburban		
С	Rural		
d	Commercial		
е	Industrial		
f	Residential		

Burn Bans 1988 – 2013

- 1988 Jan 25 (0830) Jan 28 (0830) Feb 5 (1630) - Feb 6 (0930) Dec 1 (1430) - Dec 2 (0800) Dec 4 (1430) - Dec 5 (1400) Dec 16 (1430) - Dec 18 (1430)
- 1989 Jan 19 (1430) Jan 20 (1430) Jan 24 (1430) - Jan 26 (0930) Feb 6 (1430) - Feb 8 (0930) Feb 10 (1430) - Feb 16 (0930) Nov 29 (1430) - Dec 2 (0930) Dec 22 (1430) - Dec 23 (1430)
- 1990 Jan 19 (1430) Jan 21 (1430) Dec 7 (1430) - Dec 8 (0930) Dec 25 (1430) - Dec 27 (0815)* *(Dec 26 1430 – Dec 27 0815) 2nd Stage
- 1991 Jan 5 (1430) Jan 6 (0930) Jan 21 (1430) - Jan 24 (1500)* *(Jan 22 0930 – Jan 24 1500) 2nd Stage Jan 29 (1430) - Jan 31 (0830) Dec 15 (1430) - Dec 17 (1430)* *(Dec 16 1430 – Dec 17 0930) 2nd Stage
- 1992 Jan 8 (1430) Jan 9 (0930) Jan 19 (1430) - Jan 20 (1430) Feb 5 (1000) - Feb 6 (1430) Nov 25 (1430) - Nov 26 (1430)
- 1993 Jan 11 (1430) Jan 13 (0830) Jan 15 (1430) - Jan 16 (0700) Jan 17 (1430) - Jan 19 (0600) Jan 31 (1430) - Feb 3 (0830) Dec 20 (1430) - Dec 21 (1430) Dec 26 (1430) - Dec 29 (0830)
- 1994 None
- 1995 Jan 4 Jan 7
- 1996 Feb 14 (1430) Feb 16 (1630)
- 1997 Nov 13 (1500) Nov 15 (1500) Dec 4 (1500) - Dec 7 (1800)
- 1998 None
- 1999 Jan 5 (1400) Jan 6 (1000) Dec 29 (1400) - Dec 31 (0600)
- 2000 Feb 18 (1400) Feb 20 (1000) Nov 15 (1700) - Nov 23 (0600)

2001	Nov 8 (1400) - Nov 12 (1800)
2002	Nov 1 (1500) - Nov 6 (0900) Nov 27 (1000) - Dec 4 (1000)
2003	Jan 7 (1500) - Jan 9 (1300)
2004	None
2005	Feb 21 (1600) - Feb 28 (0800) Dec 9 (1700) - Dec 18 (1200)
2006	None
2007	Jan 13 (1400) - Jan 16 (1500) Jan 28 (1400) - Jan 31 (1400) Dec 9 (1400) - Dec 11 (0930)
2008	Jan 23 (1400) - Jan 26 (1200)
2009	Jan 16 (1200) - Jan 24 (1200) Feb 3 (1400) - Feb 6 (0900) Dec 8 (1000) - Dec 13 (1000) Dec 23 (1600) - Dec 30 (1200)
2010	Jan 28 (1200) – Jan 31 (1000) Dec 30 (1700) – 31 Dec (2400)* * continued to Jan 4 (1700)
2011	Jan 1 (0000) – Jan 4 (1700) Nov 30 (1700) – Dec 7 (1300) Dec 11 (1700) – Dec 14 (1600)
2012	Jan 11 (1600) – Jan 14 (1000) Jan 27 (1200) – Jan 28 (1700) Feb 3 (1600) – Feb 6 (1600) Nov 25 (1300) – Nov 28 (0900)

 * continued to Jan 3 (1200)
 2013 Jan 1 (0000) – Jan 3 (1200) Jan 12 (1300) – Jan 22 (1000) Nov 22 (1600) – Nov 29 (1000)

Dec 29 (1700) - Dec 31 (2400)*

Dec 7 (1400) – Dec 9 (1000) Dec 25 (1700) – Dec 26 (1100)

PARTICULATE MATTER (PM_{2.5}) - Federal Reference Method

Micrograms per Cubic Meter

Reference Sampling Method: R&P Partisol 2025 Sampler – Teflon Filter

2013

Location	Number of	Quarte	erly Arith	metic Av	erages	Year Arith	98th	Max
	Values	1st	2nd	3rd	4th	Mean	Percentile	Value
7802 South L St, Tacoma	349	10.3	3.9	5.1	13.2	8.1	34.0	41.5
15 th S & Charlestown, Beacon Hill, Seattle	118	6.7	4.4	5.3	8.4	6.2	17.7	20.7

Notes:

(1) Sampling occurs for a 24 hour period from midnight to midnight.

Quarterly averages are shown only if 75 percent or more of the data is available.

(2) Annual averages are shown only if there is at least 75 percent of each 4 quarterly averages.

(3) Data from primary sampler at site

Summary of Maximum Observed Concentrations

Location	Jan 13 Sun	Jan 22 Tue
7802 South L St, Tacoma	41.5	
Beacon Hill		20.7

- - Indicates no sample on specified day

Air Quality Index Summary

Location	Good	Moderate	Unhealthy for Sensitive Groups	Unhealthy
7802 South L St, Tacoma	291	54	4	0
15 th S & Charlestown, Beacon Hill, Seattle	110	8	0	0

PARTICULATE MATTER (PM2.5) – Continuous -TEOM

Micrograms per Cubic Meter

Equivalent Sampling Methods: Mass Transducer R&P TEOM 1400ab-8500 FDMS – Teflon-coated Glass Fiber

2013

Location	Number of	Quarte	erly Arith	metic Av	erages	Year Arith	98th	Max
	Values	1st	2nd	3rd	4th	Mean	Percentile	Value
Darrington HS, 1085 Fir St, Darrington	362	8.3	2.5	4.0	11.5	6.6	26.9	34.6
Marysville JHS, 1605 7th St, Marysville	309	8.6		6.1	13.2		29.3	39.4
6120 212th St SW, Lynnwood	345	8.0	3.5	4.8	10.6	6.7	24.0	31.3
Duwamish, 4752 E Marginal Way S, Seattle	344	12.2	8.9	11.4	16.7	12.3	30.7	55.0
James St & Central Ave, Kent	364	7.4	4.0	6.0	11.7	7.3	24.7	39.4
7802 South L St, Tacoma	353	9.7	4.2	5.5	13.1	8.1	32.8	40.4
Spruce, 3250 Spruce Ave, Bremerton	349	5.2	3.1	3.9	6.9	4.8	13.2	23.4

Notes

(1) Sampling occurs continuously for 24 hours each day.

Quarterly averages are shown only if 75 percent or more of the data is available.

(2) Annual averages are shown only if there is at least 75 percent of each 4 quarterly averages.

(3) Data from primary sampler at site

Summary of Maximum Observed Concentrations

Location	Jan 13 Sun	Jul 4 Thu	Nov 24 Sun	Nov 25 Mon	Nov 28 Thu	Dec 21 Sat
Darrington HS, 1085 Fir St, Darrington						34.6
Marysville JHS, 1605 7th St, Marysville				39.4		
6120 212th St SW, Lynnwood				31.3		
Duwamish, 4401 E Marginal Way S, Seattle					55.0	
James St & Central Ave, Kent			39.4			
7802 South L St, Tacoma	40.4					
Spruce, 3250 Spruce Ave, Bremerton		23.4				

- - Indicates no sample on specified day

PARTICULATE MATTER (PM2.5) – Continuous - Nephelometer

Micrograms per Cubic Meter

Sampling Method: Equivalent – (R) Radiance Research M903 Nephelometer - (E) Ecotech Nephelometer

	20	013						
Location	Numbe r of	Quarte	erly Arith	metic Av	erages	Year Arith	98th	Max
	Values	1st	2nd	3rd	4th	Mean	Percentile	Value
Darrington HS, 1085 Fir St, Darrington (R,E)	350	8.8	3.0	5.0	12.7	7.4	27.0	35.4
Marysville JHS, 1605 7th St, Marysville (R,E)	365	8.7	4.8	5.9	14.1	8.4	30.5	41.0
6120 212th St SW, Lynnwood (E)	350	7.4	3.9	5.4	11.5	7.1	22.9	28.8
17171 Bothell Way NE, Lake Forest Park (R)	359	9.6	4.5	6.0	13.6	8.4	27.0	35.9
Queen Anne Hill, 400 W Garfield St, Seattle (E)	364	7.1	4.5	6.4	10.0	7.0	20.7	26.4
Olive & Boren, Seattle (R)	339	7.2	5.3	7.0	10.5	7.5	20.4	27.1
Duwamish, 4752 E Marginal Way S, Seattle (E)	346	9.8	6.4	8.4	14.1	9.7	24.8	58.2
South Park, 8025 10 th Ave S, Seattle (R,E)	365	10.6	6.9	8.8	13.9	10.0	24.7	41.7
305 Bellevue Way NE, Bellevue (R)	305	5.3	3.2					17.4
42404 SE North Bend Way, North Bend (R)	365	5.8	4.2	7.0	7.1	6.0	14.1	22.3
James St & Central Ave, Kent (E)	364	8.3	5.2	7.4	12.2	8.3	22.5	32.8
Tacoma Tideflats, 2301 Alexander Ave, Tacoma (R,E)	343	9.4	5.3	7.7	12.3	8.7	27.4	37.5
7802 South L St, Tacoma (E)	359	10.0	3.9	5.8	13.5	8.3	30.5	37.7
South Hill, 9616 128 th St E, Puyallup (E)	352	8.4	3.5	5.7	10.9	7.1	23.9	31.1
Spruce, 3250 Spruce Ave, Bremerton (E)	365	5.7	3.7	5.0	7.8	5.6	13.9	16.8

Notes

(1) Sampling occurs continuously for 24 hours each day.

Quarterly averages are shown only if 75 percent or more of the data is available.

(2) Annual averages are shown only if there is at least 75 percent of each 4 quarterly averages.

(3) All data values are correlated using site-specific relationships with Federal Reference Method samplers where available.

(4) Data from primary sampler at site

Summary of Maximum Observed Concentrations

Summary of the									
Location	Jan 13	Jan 16	Jul 4	Nov 24	Nov 25	Nov 28	Dec 11	Dec 12	Dec 21
	Sun	Wed	Thu	Sun	Mon	Thu	Wed	Thu	Sat
Darrington HS, 1085 Fir St, Darrington									35.4
Marysville JHS, 1605 7th St, Marysville				41.0					
6120 212th St SW, Lynnwood					28.8				
17171 Bothell Way NE, Lake Forest Park	35.9								
Queen Anne Hill, 400 W Garfield St, Seattle					26.4				
Olive & Boren, Seattle					27.1				
Duwamish, 4752 E Marginal Way S, Seattle						58.2			
South Park, 8025 10 th Ave S, Seattle						41.7			
305 Bellevue Way NE, Bellevue					17.4				
42404 SE North Bend Way, North Bend		22.3							
James St & Central Ave, Kent				32.8					
Tacoma Tideflats, 2301 Alexander Ave, Tacoma			37.5						
7802 South L St, Tacoma	37.7								
South Hill, 9616 128 th St E, Puyallup								31.1	
Spruce, 3250 Spruce Ave, Bremerton							16.8		

- - Indicates no sample on specified day

Param	
	able Pm2.5 Aqi & Speciation Mass
	num Pm2.5 Lc
	nium Ion Pm2.5 Lc
Antim	ony Pm2.5 Lc
Arseni	c Pm2.5 Lc
Bariun	n Pm2.5 Lc
Bromiı	ne Pm2.5 Lc
Cadmi	um Pm2.5 Lc
Calciu	m Pm2.5 Lc
Ceriun	n Pm2.5 Lc
Cesiun	n Pm2.5 Lc
Chloriı	ne Pm2.5 Lc
Chrom	ium Pm2.5 Lc
Cobalt	Pm2.5 Lc
Сорре	r Pm2.5 Lc
ndium	ո Pm2.5 Lc
ron Pr	m2.5 Lc
Lead P	m2.5 Lc
Magne	sium Pm2.5 Lc
Manga	nese Pm2.5 Lc
Nickel	Pm2.5 Lc
Phosp	horus Pm2.5 Lc
Potass	ium Ion Pm2.5 Lc
Potass	ium Pm2.5 Lc
Rubidi	um Pm2.5 Lc
Seleni	um Pm2.5 Lc
	Pm2.5 Lc
	Pm2.5 Lc
Sodiur	n Ion Pm2.5 Lc
	n Pm2.5 Lc
	ium Pm2.5 Lc
	e Pm2.5 Lc
	Pm2.5 Lc
Tin Pm	
	im Pm2.5 Lc
	Nitrate Pm2.5 Lc
	ium Pm2.5 Lc
	n2.5 Lc
	ium Pm2.5 Lc
	ntal Carbon TOR
	c Carbon TOR
	Carbonaceous Mass
Soil	
101	structed Fine Mass - Urban PM2.5

PM_{2.5} Speciation Analytes Monitored in 2013 Average Annual Concentrations in Micrograms per Cubic Meter

Additional information can be obtained at: epa.gov/ttn/airs/aqsdatamart/

PM_{2.5} BLACK CARBON

Micrograms per Cubic Meter

Sampling Method: Light Absorption by Aethalometer

2013

Location	Number of	Quarte	erly Arith	erages	Annual	Max	
	Values	1st	2nd	3rd	4th	Mean	Value
Marysville JHS, 1605 7th St, Marysville	357	1.0	0.5	0.6	1.8	1.0	5.2
Duwamish, 4401 E Marginal Way S, Seattle	342	1.3	0.7	1.0	1.7	1.2	6.4
James St & Central Ave, Kent	359	1.1	0.6	0.7	1.6	1.0	4.7
7802 South L St, Tacoma	354	1.0	0.4	0.4	1.5	0.8	4.5
Tacoma Tideflats, 2301 Alexander Ave, Tacoma	357	1.1	0.7	0.9	1.9	1.1	6.1
South Hill, 9616 128 th St E, Puyallup	358	0.9	0.5	0.6	1.1	0.8	3.6

Notes

(1) Sampling occurs continuously for 24 hours each day.

Quarterly averages are shown only if 75 % or more of the data is available.

(2) Annual averages are shown only if there are at least three quarterly averages.

Location	Nov 25 Mon	Nov 26 Tue	Dec 12 Thu
Marysville JHS, 1605 7th St, Marysville	5.2		
Duwamish, 4752 E Marginal Way S, Seattle		6.4	
James St & Central Ave, Kent	4.7		
7802 South L St, Tacoma	4.5		
Tacoma Tideflats, 2301 Alexander Ave, Tacoma	6.1		
South Hill, 9616 128 th St E, Puyallup			3.6

Summary of Maximum Observed Concentrations

OZONE

(parts per million)

2013

Location / Continuous Sampling Period(s)	2011 Four H 8-Hour Con			Highest [r Concen		3-Year Average of 4 th Highest 8-Hour Concentration
	Value	Date	2011	2012	2013	2011 – 2013
Beacon Hill, 15th S & Charlestown Seattle, WA	.047 .047	4 May 5 May				
1 Jan – 31 Dec	.046 .045	14 May 6 Apr	.044	.044	.045	.044
20050 SE 56 th	.051	5 May				
Lake Sammamish State Park, WA	.051	6 May				
1 May – 30 Sep	.048 .048	1 May 14 May	.054	.059	.048	.053
42404 SE North Bend Way,	.058	1 Jul				
North Bend, WA	.057	6 May				
1 May – 30 Sep	.056	10 May				
	.056	6 Aug	.052	.058	.056	.055
30525 SE Mud Mountain Road,	.073	1 Jul				
Enumclaw, WA	.069	30 Jun				
1 May – 30 Sep	.057	10 May				
	.057	11 May	.059	.071	.057	.062
931 Northern Pacific Rd SE,	.056	6 May				
Yelm, WA	.055	5 May				
1 May – 30 Sep	.053	30 Jun				
	.050	4 May	.054	.061	.050	.055

Notes

All ozone stations operated by the Washington State Department of Ecology.
 Ending times are reported in Pacific Standard Time.
 For equal concentration values the date and time refer to the earliest occurrences.

(4) Continuous sampling periods are those with fewer than 10 consecutive days of missing data.(5) At all stations ozone was measured using the continuous ultraviolet photometric detection method.

REACTIVE NITROGEN

(Parts per Million)

2013

Monthly and Annual Arithmetic Averages

Location	Monthly Arithmetic Averages									No of 1-Hour	Year Arith			
Location	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Samples	Mean
Beacon Hill, 15th S & Charlestown, Seattle	.017	.013	.013	.009	.010	.009	.010	.011	.012	.013	.015	.016	8666	.012

Maximum and Second Highest Concentrations

Location / Continuous Sampling Periods(s)	1-Hour Average						
	Value	Date	End Time				
Beacon Hill, 15th S & Charlestown, Seattle	.058	25 Apr	1900				
1 Jan - 31 Dec	.053	26 Nov	1500				

Notes

(1) Ending times are reported in Pacific Standard Time.

(2) For equal concentration values the date and time refer to the earliest occurrences.

(3) Continuous sampling periods are those with fewer than 10 consecutive days of missing data.

(4) At all stations nitrogen dioxide was measured using the continuous chemiluminescence method.

CARBON MONOXIDE

(parts per million)

2013

		Six High	nest Concent	rations		Number of 8-Hour	Number of Days 8-Hour
Location / Continuous Sampling Period(s)	11	Hour Averag	e	8 Hour A	Average	Averages	Averages
	Value	Date	End Time	Value	Date	Exceeding 9 ppm	Exceeded 9 ppm
	1.8	28 Jan	1300	1.0	22 Jan	0	0
	1.6	22 Jan	1800	1.0	25 Nov		
Beacon Hill, 15th S & Charlestown, Seattle	1.5	22 Jan	1900	1.0	26 Nov		
1 Jan – 13 Oct, 1 Nov – 31 Dec	1.5	26 Nov	1500	1.0	27 Dec		
	1.4	27 Dec	0200	0.9	26 Dec		
	1.4	22 Jan	1700	0.9	23 Jan		

Notes

(1) All carbon monoxide stations operated by the Washington State Department of Ecology.

(2) Ending times are reported in Pacific Standard Time.

(3) For equal concentration values the date and time refer to the earliest occurrences.

(4) Continuous sampling periods are those with fewer than 10 consecutive days of missing data.

(5) At all stations carbon monoxide was measured using the continuous nondispersive infrared method.

SULFUR DIOXIDE

(parts per million)

2013

Monthly and Annual Arithmetic Averages

Location		Monthly Arithmetic Averages								No of 1-Hour	Year Arith				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Samples Mean		
Beacon Hill, 15th S & Charlestown, Seattle	.001	.001	.001	.001	.001	.001	.002	.001					5753	.001	

--- indicates no data available. Sampling ended 9/8/14.

Maximum and Second Highest Concentrations for Various Averaging Periods

Location /	1 Hour Average					
Continuous Sampling Period(s)	Value	Date	End Time			
Beacon Hill, 15th S & Charlestown, Seattle	.012	17 Aug	2000			
1 Jan – 8 Sept	.009	11 May	1900			

Notes

(1) Ending times are reported in Pacific Standard Time.

(2) For equal concentration values the date and time refer to the earliest occurrences.

(3) Continuous sampling periods are those with fewer than 10 consecutive days of missing data.

(4) Sulfur dioxide was measured using the continuous ultraviolet fluorescence method.

(5) --- indicates no data available. Sampling ended 9/8/14.

2013 Beacon Hill Air Toxics Statistical Summary for Air Toxics (units in parts per billion)

	1,3-					Carbon						
	Butadiene	Acetaldehyde	Acrolein	Acrylonitrile	Benzene	Tetrachloride	Chloroform	Dichloromethane	Ethylbenzene	Ethylene Dichloride	Formaldehyde	Tetrachloroethylene
2013 Count	57	57	56	57	57	57	57	57	57	57	57	57
NDs (reported as 0)	8	0	0	56	0	0	1	0	0	7	0	12
, Median (ppb)	0.028	0.328	0.232	0.000	0.144	0.106	0.024	0.236	0.050	0.018	0.419	0.012
Mean (ppb)	0.034	0.397	0.285	0.002	0.175	0.109	0.025	0.372	0.055	0.017	0.460	0.012
95%tile (ppb)	0.097	0.836	0.699	0.000	0.376	0.137	0.035	1.05	0.109	0.028	0.935	0.025
Max (ppb)	0.148	1.16	0.890	0.122	0.469	0.165	0.042	2.41	0.152	0.032	1.01	0.039
MDL (ppb)	0.007	0.008	0.050		0.029	0.024	0.009	0.010	0.017		0.012	0.018
# Below MDL	10	0	0	56	0	0	2	0	2	23	0	40
% Below MDL	18%	0%	0%	98%	0%	0%	4%	0%	4%	40%	0%	70%

2013 Beacon Hill Air Toxics Statistical Summary for Air Toxics (units in nanograms per cubic meter)

	Arsenic	Cadmium	Cr+6 TSP	Naphthalene	Nickel
	Juscine	caamam	101	Ruphenalene	Hickei
2013 Count	60	60	29	57	60
NDs (reported as					
0)	0	0	13	0	0
Median (ng/m3)	0.625	0.090	0.013	59.1	1.25
Mean (ng/m3)	0.786	2.176	0.021	70.54	1.78
95%tile (ng/m3)	1.843	0.744	0.061	190.00	5.09
Max (ng/m3)	2.42	120	0.078	206	9.75
MDL (ng/m3)	0.058	0.021	0.004	0.112	0.506
# Below MDL	2	0	13	0	1
% Below MDL	3%	0%	45%	0%	2%

Toxics in gray are over 50% below the method detection limit.

Estimates of Air Toxics Risk 2013 Air Toxics Unit Risk Factors

Potential cancer risk is estimated by multiplying the concentration of a pollutant by its unit risk factor (URF), a constant that takes into account its cancer potency. This is shown in the equation below:

Potential cancer risk = ambient concentration ($\mu g/m^3$) * unit risk factor (risk/ $\mu g/m^3$)

Unit risk factors are often based on epidemiological studies (studies of diseases occurring in human populations) and are also extrapolated from laboratory animal studies. Unit risk factors are typically based on an assumed 70-year (lifetime) exposure interval and are available from multiple sources. Cancer risk was estimated using unit risk factors from the Washington State Acceptable Source Impact Levels (ASIL).¹ The two sources for the ASIL include EPA's Integrated Risk Information System² (IRIS) as well as California EPA's Office of Environmental Health and Hazard Assessment³ (OEHHA).⁴ Both of these sources are based on peer-reviewed literature and extensive review. We present potential cancer risk estimates based on the Washington ASIL values (listed below). The cancer rating, based on IARC definitions, refers to its "weight of evidence" ranking: 1 = carcinogenic to humans, 2A = probably carcinogenic to humans, and 2B = possibly carcinogenic to humans.⁵

AIR TOXIC	WA ASIL 460 UNIT RISK FACTOR RISK/µg/m ³	CANCER RATING ⁶
1,3-Butadiene	1.7 x 10 ⁻⁴	1
Acetaldehyde	2.7 x 10 ⁻⁶	2B
Acrylonitrile	3.5 x 10 ⁻³	2B
Arsenic	3.3 x 10 ⁻³	1
Benzene	2.9 x 10 ⁻⁵	1
Cadmium	4.2 x 10 ⁻³	1
Carbon Tetrachloride	4.2 x 10 ⁻⁵	2B
Chloroform	2.3 x 10 ⁻⁵	2B
Chromium (Hexavalent)	1.5 x 10 ⁻¹	1
Dichloromethane	1.0 x 10 ⁻⁶	2B
Ethylbenzene	2.5 x 10 ⁻⁶	2B
Ethylene Dichloride	2.1 x 10 ⁻⁵	2B
Formaldehyde	6.0 x 10 ⁻⁶	1
Naphthalene	3.4 x 10 ⁻⁵	2B
Nickel (Subsulfide)	2.4 x 10 ⁻⁴	1
Tetrachloroethylene	7.4 x 10 ⁻⁶	2A

2013 Air Toxics Unit Risk Factors

¹Washington State Administrative Code. <u>apps.leg.wa.gov/wac/default.aspx?cite=173-460-150</u>.

²Integrated Risk Information System, EPA; epa.gov/iris/.

³California EPA, Consolidated Table of OEHHA/ARB-Approved Risk Assessment Health Values, June 25, 2008; <u>arb.ca.gov/toxics/healthval/healthval.htm</u>.

⁴For details on the ASIL, see: ecy.wa.gov/laws-rules/wac173460_400/February/ASIL_20list_20pollutants2-8-08-5pm1.pdf.

⁵International Agency for Research on Cancer; <u>http://monographs.iarc.fr/</u>.

⁶Ratings per International Agency for Research on Cancer, updated October 2014; <u>http://monographs.iarc.fr/ENG/Classification/</u>

2013 Beacon Hill Potential Cancer Risk Estimates per 1,000,000 – 95th Percentile percentage of samples greater than cancer screen value

		RISK based on 95th Percentile Concentrations Washington	
Air Toxic	Rank	ASIL	% of samples > ASIL screen
1,3-Butadiene	1	36	86%
Carbon Tetrachloride	2	36	100%
Benzene	3	35	100%
Chromium VI (TSP)	4	9	55%
Formaldehyde	5	7	95%
Naphthalene	6	6	84%
Arsenic (PM10)	7	6	88%
Acetaldehyde	8	4	82%
Chloroform	9	4	98%
Dichloromethane	10	4	44%
Cadmium (PM10)	11	3	15%
Ethylene Dichloride	12	3	88%
Nickel (PM10)	13	3	25%
Ethylbenzene	14	1	9%
Tetrachloroethylene	15	1	7%

Shaded air toxics have >50% of samples with estimated concentrations (values below the reported laboratory detection limit). Screening value used is concentration equivalent to an estimated one-in-a-million potential cancer risk.

Air toxic	Non Cancer RfC (ug/m3)	Mean Hazard Index
Acrolein	0.35	1.865
Cadmium Pm10 Stp	0.02	0.109
Manganese Pm10 Stp	0.09	0.076
Formaldehyde	9	0.063
Arsenic Pm10 Stp	0.015	0.052
Nickel Pm10 Stp	0.05	0.036
Carbon Tetrachloride	40	0.017
Benzene	60	0.009
Acetaldehyde	140	0.005
1,3-Butadiene	20	0.004
Dichloromethane	400	0.003
Tetrachloroethylene	35	0.002
Chloroform	300	< 0.001
Chromium VI Tsp	0.2	< 0.001

Non-cancer Reference Concentrations (RfC) and Hazard Indices >1

Reference concentrations are based on chronic values from California Air Resources Board (OEHHA). Mean hazard index is based on HQ=1, HI = mean concentration/reference concentration. Acrolein is the only air toxic that fails the screen with a hazard index greater than 1.

Air Toxics Trends Statistical Summary

The following table includes the statistical information for the potential cancer risk trends found in the data summary, including if the trend is statistically significant.

Air Toxic	Significance (p-value)	Slope (change in risk per million per year)	y-intercept	Correlation (R ²)	Number of years (N)
1,3-Butadiene	True (0.008)	-0.848	0.060	0.483	13
Acetaldehyde	True (0)	-0.207	0.965	0.785	13
Arsenic PM10	False (0.105)	-0.075	0.969	0.295	10
Benzene	True (0)	-2.190	0.475	0.773	13
Cadmium PM10	False (0.168)	0.405	-0.517	0.252	9
Carbon Tetrachloride	False (0.154)	0.275	0.102	0.176	13
Chloroform	True (0)	-0.290	0.057	0.852	13
Chromium VI Tsp	True (0.003)	-0.430	0.066	0.799	8
Dichloromethane	False (0.265)	0.220	-0.302	0.239	7
Ethylbenzene	False (0.77)	0.004	0.054	0.019	7
Formaldehyde	True (0.007)	-0.889	1.987	0.505	13
Naphthalene	False (0.557)	0.038	56.122	0.093	6
Nickel PM10	False (0.458)	-0.019	2.707	0.081	9
Tetrachloroethylene	True (0.001)	-0.058	0.033	0.645	13

AIR QUALITY STANDARDS AND HEALTH GOALS

National Ambient Air Quality Standards (NAAQS)

The <u>Clean Air Act</u>, which was last amended in 1990, requires EPA to set <u>National Ambient Air Quality</u> <u>Standards</u> (40 CFR part 50) for pollutants considered harmful to public health and the environment. The Clean Air Act identifies two types of national ambient air quality standards. *Primary standards* provide public health protection, including protecting the health of "sensitive" populations such as asthmatics, children, and the elderly. *Secondary standards* provide public welfare protection, including protection against decreased visibility and damage to animals, crops, vegetation, and buildings.

EPA has set National Ambient Air Quality Standards for six principal pollutants, called "criteria" pollutants (listed below). Units of measure for the standards are parts per million (ppm) by volume, parts per billion (ppb) by volume, and micrograms per cubic meter of air (μ g/m³).

EPA is required to re-visit and update standards every five years, to incorporate the latest health and welfare information.

The state of Washington and the Puget Sound region have adopted these standards. For more information, EPA air quality standards and supporting rationale are available at <u>epa.gov/air/criteria.html</u>. Washington State air quality regulations are available at <u>ecy.wa.gov/laws-rules/ecywac.html#air</u>.⁷ The air quality standards that apply to the Puget Sound air shed are summarized below.

⁷Washington Administrative Code chapters 173-470, 173-474, and 173-475.

Puget Sound Region Air Quality Standards for Criteria Pollutants for 2013

Pollutant [final rule cite]		Primary/ Secondary	Averaging Time	Level	Form	
<u>Carbon Monoxide</u> [76 FR 54294, Aug 31, 2011]		primary	8-hour	9 ppm	Not to be exceeded more than once pe year	
			1-hour	35 ppm		
<u>Lead</u> [73 FR 66964, Nov 12, 2008]		p <mark>r</mark> imary and secondary	Rolling 3 month average	0.15 µg/m ^{3 <u>(1)</u>}	Not to be exceeded	
<u>Nitrogen Dioxide</u> [75 FR 6474, Feb 9, 2010] [61 FR 52852, Oct 8, 1996]		primary	1-hour	100 ppb	98th percentile, averaged over 3 years	
		primary and secondary	Annual	53 ppb (2)	Annual Mean	
<u>Ozone</u> [73 FR 16436, Mar 27, 2008]		primary and secondary	8-hour	0.075 ppm ⁽³⁾	Annual fourth-highest daily maximum 8-hr concentration, averaged over 3 years	
<u>Particle Pollution</u> Dec 14, 2012	PM _{2.5}	primary	Annual	12 µg/m ³	annual mean, averaged over 3 years	
		secondary	Annual	15 µg/m ³	annual mean, averaged over 3 years	
		primary and secondary	24 <mark>-ho</mark> ur	35 µg/m ³	98th percentile, averaged over 3 years	
	PM ₁₀	primary and secondary	24-hour	150 µg/m ³	Not to be exceeded more than once per year on average over 3 years	
<u>Sulfur Dioxide</u> [<u>75 FR 35520, Jun 22, 2010]</u> [38 FR 25678, Sept 14, 1973]		primary	1-hour	75 ppb (4)	99th percentile of 1-hour daily maximum concentrations, averaged over 3 years	
		secondary	3-hour	0.5 ppm	Not to be exceeded more than once per year	

as of October 2011

(1) Final rule signed October 15, 2008. The 1978 lead standard (1.5 µg/m3 as a quarterly average) remains in effect until one year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved.
 (2) The official level of the annual NO2 standard is 0.053 ppm, equal to 53 ppb, which is shown here for the purpose of clearer comparison to the 1-hour standard.

(2) Final rule signed March 12, 2008. The 1997 score standard (0.05 ppm, annual fourth-highest daily maximum 8-hour concentration, averaged over 3 years) and related implementation rules remain in place. In 1997, EPA revoked the 1-hour ozone standard (0.12 ppm, not to be exceeded more than once per year) in all areas, although some areas have continued obligations under that standard ("anti-backsliding"). The 1-hour ozone standard is attained when the expected number of days per calendar year with maximum hourly average concentrations above 0.12 ppm is less than or equal to 1.

(4) Final rule signed June 2, 2010. The 1971 annual and 24-hour SO2 standards were revoked in that same rulemaking. However, these standards remain in effect until one year after an area is designated for the 2010 standard, except in areas designated nonattainment for the 1971 standards, where the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standard are approved.

Pollutants typically have multiple standards with different averaging times; for example, daily and annual standards. Multiple standards are created and enforced to address health impacts as a result of a shorter, high-level exposure versus longer, low-level exposures. These differences are addressed pollutant-by-pollutant in the following sections. Additional information is on EPA's website at <u>epa.gov/air/criteria.html</u>.

The Agency has developed an air quality health goal for daily $PM_{2.5}$ concentrations. The Agency convened a Particulate Matter Health Committee, comprised of local health professionals, who examined the fine particulate health research.⁸ The Health Committee did not consider the federal standard at the time to be protective of human health. In 1999, the Agency adopted a health goal of $25 \mu g/m^3$ for a daily average, more protective than the current federal standard of $35 \mu g/m^3$. This level is consistent with the American Lung Association's goal and the EPA Clean Air Science Advisory Committee's recommended lower range for the EPA's 2006 ambient air quality standard revision.^{9,10} The Agency did not adopt a separate health goal for the annual average.

⁸Puget Sound Clean Air Agency. Final Report of the Puget Sound Clean Air Agency PM_{2.5} Stakeholder Group; <u>pscleanair.org/news/library/reports/pm2_5_report.pdf</u>.

⁹American Lung Association; <u>lungusa.org/assets/documents/publications/state-of-the-air/state-of-the-air-report-2006.pdf</u>.

¹⁰EPA Clean Air Science Advisory Committee (CASAC) Particulate Matter (PM) Review Panel; <u>epa.gov/sab/panels/casacpmpanel.html</u>.